Wang Hao, Dong Chaobo, Gui Yaliang, Ye Jiachi, Altaleb Salem, Thomaschewski Martin, Movahhed Nouri Behrouz, Patil Chandraman, Dalir Hamed, Sorger Volker J
Optelligence LLC, 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA.
Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA.
Nanomaterials (Basel). 2023 Jun 29;13(13):1973. doi: 10.3390/nano13131973.
Van der Waals (vdWs) heterostructures, assembled by stacking of two-dimensional (2D) crystal layers, have emerged as a promising new material system for high-performance optoelectronic applications, such as thin film transistors, photodetectors, and light-emitters. In this study, we showcase an innovative device that leverages strain-tuning capabilities, utilizing a MoS/SbTe vdWs p-n heterojunction architecture designed explicitly for photodetection across the visible to near-infrared spectrum. These heterojunction devices provide ultra-low dark currents as small as 4.3 pA, a robust photoresponsivity of 0.12 A W, and reasonable response times characterized by rising and falling durations of 0.197 s and 0.138 s, respectively. These novel devices exhibit remarkable tunability under the application of compressive strain up to 0.3%. The introduction of strain at the heterojunction interface influences the bandgap of the materials, resulting in a significant alteration of the heterojunction's band structure. This subsequently shifts the detector's optical absorption properties. The proposed strategy of strain-induced engineering of the stacked 2D crystal materials allows the tuning of the electronic and optical properties of the device. Such a technique enables fine-tuning of the optoelectronic performance of vdWs devices, paving the way for tunable high-performance, low-power consumption applications. This development also holds significant potential for applications in wearable sensor technology and flexible electro-optic circuits.
范德华(vdWs)异质结构由二维(2D)晶体层堆叠而成,已成为用于高性能光电器件应用的一种很有前景的新型材料体系,如薄膜晶体管、光电探测器和发光器。在本研究中,我们展示了一种利用应变调谐能力的创新器件,它采用了专门为可见到近红外光谱范围内的光电探测设计的MoS/SbTe vdWs p-n异质结结构。这些异质结器件提供低至4.3 pA的超低暗电流、0.12 A/W的强大光响应度,以及分别以0.197 s和0.138 s的上升和下降持续时间为特征的合理响应时间。这些新型器件在施加高达0.3%的压缩应变时表现出显著的可调谐性。在异质结界面引入应变会影响材料的带隙,从而导致异质结能带结构发生显著变化。这随后会改变探测器的光吸收特性。所提出的对堆叠二维晶体材料进行应变诱导工程的策略能够调节器件的电学和光学性质。这种技术能够对vdWs器件的光电性能进行微调,为可调谐的高性能、低功耗应用铺平道路。这一进展在可穿戴传感器技术和柔性电光电路应用中也具有巨大潜力。