Suppr超能文献

SAAED:嵌入与深度学习增强环状RNA与疾病关联的准确预测

SAAED: Embedding and Deep Learning Enhance Accurate Prediction of Association Between circRNA and Disease.

作者信息

Liu Qingyu, Yu Junjie, Cai Yanning, Zhang Guishan, Dai Xianhua

机构信息

School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China.

Macquarie Business School, Macquarie University, Sydney, NSW, Australia.

出版信息

Front Genet. 2022 Feb 22;13:832244. doi: 10.3389/fgene.2022.832244. eCollection 2022.

Abstract

Emerging evidence indicates that circRNA can regulate various diseases. However, the mechanisms of circRNA in these diseases have not been fully understood. Therefore, detecting potential circRNA-disease associations has far-reaching significance for pathological development and treatment of these diseases. In recent years, deep learning models are used in association analysis of circRNA-disease, but a lack of circRNA-disease association data limits further improvement. Therefore, there is an urgent need to mine more semantic information from data. In this paper, we propose a novel method called Semantic Association Analysis by Embedding and Deep learning (SAAED), which consists of two parts, a neural network embedding model called Entity Relation Network (ERN) and a Pseudo-Siamese network (PSN) for analysis. ERN can fuse multiple sources of data and express the information with low-dimensional embedding vectors. PSN can extract the feature between circRNA and disease for the association analysis. CircRNA-disease, circRNA-miRNA, disease-gene, disease-miRNA, disease-lncRNA, and disease-drug association information are used in this paper. More association data can be introduced for analysis without restriction. Based on the CircR2Disease benchmark dataset for evaluation, a fivefold cross-validation experiment showed an AUC of 98.92%, an accuracy of 95.39%, and a sensitivity of 93.06%. Compared with other state-of-the-art models, SAAED achieves the best overall performance. SAAED can expand the expression of the biological related information and is an efficient method for predicting potential circRNA-disease association.

摘要

新出现的证据表明,环状RNA可调控多种疾病。然而,环状RNA在这些疾病中的作用机制尚未完全明确。因此,检测潜在的环状RNA与疾病的关联对这些疾病的病理发展和治疗具有深远意义。近年来,深度学习模型被用于环状RNA与疾病的关联分析,但环状RNA与疾病的关联数据匮乏限制了其进一步发展。因此,迫切需要从数据中挖掘更多语义信息。本文提出了一种名为嵌入与深度学习语义关联分析(SAAED)的新方法,该方法由两部分组成,一个名为实体关系网络(ERN)的神经网络嵌入模型和一个用于分析的伪孪生网络(PSN)。ERN可以融合多源数据并用低维嵌入向量表达信息。PSN可以提取环状RNA与疾病之间的特征用于关联分析。本文使用了环状RNA与疾病、环状RNA与微小RNA、疾病与基因、疾病与微小RNA、疾病与长链非编码RNA以及疾病与药物的关联信息。可以不受限制地引入更多关联数据进行分析。基于CircR2Disease基准数据集进行评估,五折交叉验证实验显示曲线下面积(AUC)为98.92%,准确率为95.39%,灵敏度为93.06%。与其他现有最佳模型相比,SAAED取得了最佳的整体性能。SAAED可以扩展生物相关信息的表达,是预测潜在环状RNA与疾病关联的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ded/8902643/52354dfa53bc/fgene-13-832244-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验