Suppr超能文献

贝叶斯模型的人机互补。

Bayesian modeling of human-AI complementarity.

机构信息

Department of Cognitive Sciences, University of California, Irvine, CA 92697-5100; and.

Department of Computer Science, University of California, Irvine, CA 92697-3435.

出版信息

Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2111547119. doi: 10.1073/pnas.2111547119. Epub 2022 Mar 11.

Abstract

SignificanceWith the increase in artificial intelligence in real-world applications, there is interest in building hybrid systems that take both human and machine predictions into account. Previous work has shown the benefits of separately combining the predictions of diverse machine classifiers or groups of people. Using a Bayesian modeling framework, we extend these results by systematically investigating the factors that influence the performance of hybrid combinations of human and machine classifiers while taking into account the unique ways human and algorithmic confidence is expressed.

摘要

意义随着人工智能在现实应用中的增加,人们有兴趣构建混合系统,同时考虑人类和机器的预测。以前的工作已经表明,分别组合不同的机器分类器或人群的预测的好处。我们使用贝叶斯建模框架,通过系统地研究影响人类和机器分类器混合组合性能的因素,同时考虑到人类和算法信心表达的独特方式,扩展了这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8931210/ea43f6dada7d/pnas.2111547119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验