Suppr超能文献

猜测中的思考。

Deliberation in Guesstimation.

作者信息

Salikutluk Vildan, Jäkel Frank

机构信息

Centre for Cognitive Science, Technical University of Darmstadt.

出版信息

Cogn Sci. 2025 Aug;49(8):e70090. doi: 10.1111/cogs.70090.

Abstract

In many real-world settings, people often have to make judgments with incomplete information. Estimating unknown quantities without using precise quantitative modeling and data is called guesstimation, which is often needed in forecasting settings. Furthermore, research in education found that solving guesstimation problems builds general problem-solving skills. In this paper, we present an empirical investigation on how people solve guesstimation problems. We study their problem-solving behavior with think-aloud methods, and we identify solution strategies that are frequently used. In a two-response paradigm, we first ask for gut-feeling answers to guesstimation questions and then allow deliberation before a second answer is given. Comparing the quality of these two answers reveals that deliberation improves the answer quality significantly. In a second experiment, we additionally elicit participants' confidence about their deliberated answers by asking for an entire distribution instead of just a point estimate. We find that participants are generally overconfident in their answers. We discuss guesstimation tasks as suitable test-beds for studying human deliberative judgments in general and in the more specific context of improving forecasting through appropriate artificial intelligence tools.

摘要

在许多现实世界的场景中,人们常常不得不依据不完整的信息做出判断。在不使用精确的定量建模和数据的情况下估计未知量被称为猜测,这在预测场景中经常是必要的。此外,教育领域的研究发现,解决猜测问题能够培养一般的问题解决能力。在本文中,我们对人们如何解决猜测问题进行了实证研究。我们运用出声思考法研究他们的问题解决行为,并识别出经常被使用的解决策略。在双反应范式中,我们首先要求对猜测问题给出直觉答案,然后在给出第二个答案之前允许进行思考。比较这两个答案的质量表明,思考能显著提高答案质量。在第二个实验中,我们通过要求给出完整的分布而不仅仅是一个点估计,额外引出参与者对他们经过思考的答案的信心。我们发现参与者通常对自己的答案过度自信。我们将猜测任务视为研究一般人类思考性判断以及在通过适当的人工智能工具改进预测这一更具体背景下的合适测试平台进行讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6272/12349749/c97771ff105c/COGS-49-e70090-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验