Lu Hongfei, Jin Qianzheng, Jiang Xin, Dang Zhi-Min, Zhang Di, Jin Yang
Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.
Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
Small. 2022 Apr;18(16):e2200131. doi: 10.1002/smll.202200131. Epub 2022 Mar 11.
Metallic zinc anodes in zinc-ion batteries suffer from problematic Zn dendrite chemistry. Previous works have shown that preferred-orientation crystal planes can help dendrite-free metal anodes. This work reports a nanothickness (≈570 nm) AgZn coating to regulate the Zn growth. First, AgZn @Zn anode avoids the problem, in Ag@Zn anode, that the rate of electrochemical Ag-Zn alloying is slower than that of Zn dendrites growth. Batteries life increased from 112 h (pure Zn) and 932 h (Ag@Zn) to 1360 h (AgZn @Zn) at 2 mA cm and 1 mAh cm . Then, plasma sputtering can remove nonconductive ZnO and improve Zn-ion affinity, which brings a longer life for AuZn @Zn (423 h), CuZn @Zn (385 h), and AgZn @Zn (1150 h) than pure Zn (93 h) at 1 mAh cm . More importantly, AgZn (002) has a high matching with the Zn (002), which can guide ordered Zn epitaxial deposition, thereby achieving dense and dendrite-free Zn growth. This work clearly captures the fascinating structure of the densely stacked Zn layers on the AgZn layer. This strategy not only improves the performance of zinc-ion batteries greatly but will also help one understand the matching mechanism of the (002) vertical crystal plane.
锌离子电池中的金属锌阳极存在锌枝晶化学问题。先前的研究表明,择优取向晶面有助于实现无枝晶金属阳极。本文报道了一种纳米厚度(约570纳米)的AgZn涂层来调控锌的生长。首先,AgZn@Zn阳极避免了Ag@Zn阳极中存在的电化学Ag-Zn合金化速率慢于锌枝晶生长速率的问题。在2 mA cm²和1 mAh cm²的条件下,电池寿命从112小时(纯锌)和932小时(Ag@Zn)提高到了1360小时(AgZn@Zn)。其次,等离子体溅射可以去除非导电的ZnO并提高锌离子亲和力,这使得在1 mAh cm²的条件下,AuZn@Zn(423小时)、CuZn@Zn(385小时)和AgZn@Zn(1150小时)的寿命比纯锌(93小时)更长。更重要的是,AgZn(002)与Zn(002)具有高度匹配性,能够引导有序的锌外延沉积,从而实现致密且无枝晶的锌生长。本文清晰地捕捉到了AgZn层上密集堆叠的锌层的迷人结构。这种策略不仅极大地提高了锌离子电池的性能,还将有助于人们理解(002)垂直晶面的匹配机制。