Suppr超能文献

镶嵌型纳米晶石墨烯表皮助力高度可逆的锌金属负极。

Mosaic Nanocrystalline Graphene Skin Empowers Highly Reversible Zn Metal Anodes.

机构信息

College of Energy, Soochow Institute for Energy and Materials InnovationS, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China.

School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Feb;10(4):e2206077. doi: 10.1002/advs.202206077. Epub 2022 Dec 5.

Abstract

Constructing a conductive carbon-based artificial interphase layer (AIL) to inhibit dendritic formation and side reaction plays a pivotal role in achieving longevous Zn anodes. Distinct from the previously reported carbonaceous overlayers with singular dopants and thick foreign coatings, a new type of N/O co-doped carbon skin with ultrathin feature (i.e., 20 nm thickness) is developed via the direct chemical vapor deposition growth over Zn foil. Throughout fine-tuning the growth conditions, mosaic nanocrystalline graphene can be obtained, which is proven crucial to enable the orientational deposition along Zn (002), thereby inducing a planar Zn texture. Moreover, the abundant heteroatoms help reduce the solvation energy and accelerate the reaction kinetics. As a result, dendrite growth, hydrogen evolution, and side reactions are concurrently mitigated. Symmetric cell harvests durable electrochemical cycling of 3040 h at 1.0 mA cm /1.0 mAh cm and 136 h at 30.0 mA cm /30.0 mAh cm . Assembled full battery further realizes elongated lifespans under stringent conditions of fast charging, bending operation, and low N/P ratio. This strategy opens up a new avenue for the in situ construction of conductive AIL toward pragmatic Zn anode.

摘要

构建导电碳基人工界面层 (AIL) 以抑制枝晶形成和副反应在实现长寿命 Zn 阳极方面起着关键作用。与以前报道的具有单一掺杂剂和厚外来涂层的碳质覆盖层不同,通过在 Zn 箔上直接化学气相沉积生长,开发出了一种新型的具有超薄特征(即 20nm 厚度)的 N/O 共掺杂碳皮。通过精细调整生长条件,可以获得镶嵌纳米晶石墨烯,这对于实现沿 Zn(002)的定向沉积从而诱导平面 Zn 织构至关重要。此外,丰富的杂原子有助于降低溶剂化能并加速反应动力学。结果,枝晶生长、析氢和副反应同时得到缓解。对称电池在 1.0 mA cm /1.0 mAh cm 下进行了 3040 小时、在 30.0 mA cm /30.0 mAh cm 下进行了 136 小时的耐用电化学循环。组装后的全电池在快速充电、弯曲操作和低 N/P 比等严格条件下进一步实现了更长的寿命。该策略为实用 Zn 阳极的原位构建导电 AIL 开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2083/9896044/08a596a9a8f0/ADVS-10-2206077-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验