人工智能程序预测溃疡性结肠炎相关癌症或异型增生中的 p53 突变。
Artificial Intelligence Program to Predict p53 Mutations in Ulcerative Colitis-Associated Cancer or Dysplasia.
机构信息
Department of Surgical Oncology, University of Tokyo, Tokyo, Japan.
Department of Pathology, University of Tokyo, Tokyo, Japan.
出版信息
Inflamm Bowel Dis. 2022 Jul 1;28(7):1072-1080. doi: 10.1093/ibd/izab350.
BACKGROUND
The diagnosis of colitis-associated cancer or dysplasia is important in the treatment of ulcerative colitis. Immunohistochemistry of p53 along with hematoxylin and eosin (H&E) staining is conventionally used to accurately diagnose the pathological conditions. However, evaluation of p53 immunohistochemistry in all biopsied specimens is expensive and time-consuming for pathologists. In this study, we aimed to develop an artificial intelligence program using a deep learning algorithm to investigate and predict p53 immunohistochemical staining from H&E-stained slides.
METHODS
We cropped 25 849 patches from whole-slide images of H&E-stained slides with the corresponding p53-stained slides. These slides were prepared from samples of 12 patients with colitis-associated neoplasia who underwent total colectomy. We annotated all glands in the whole-slide images of the H&E-stained slides and grouped them into 3 classes: p53 positive, p53 negative, and p53 null. We used 80% of the patches for training a convolutional neural network (CNN), 10% for validation, and 10% for final testing.
RESULTS
The trained CNN glands were classified into 2 or 3 classes according to p53 positivity, with a mean average precision of 0.731 to 0.754. The accuracy, sensitivity (recall), specificity, positive predictive value (precision), and F-measure of the prediction of p53 immunohistochemical staining of the glands detected by the trained CNN were 0.86 to 0.91, 0.73 to 0.83, 0.91 to 0.92, 0.82 to 0.89, and 0.77 to 0.86, respectively.
CONCLUSIONS
Our trained CNN can be used as a reasonable alternative to conventional p53 immunohistochemical staining in the pathological diagnosis of colitis-associated neoplasia, which is accurate, saves time, and is cost-effective.
背景
在溃疡性结肠炎的治疗中,结直肠相关性癌症或异型增生的诊断非常重要。免疫组织化学 p53 联合苏木精和伊红(H&E)染色通常用于准确诊断病理状况。然而,对所有活检标本进行 p53 免疫组织化学评估对于病理学家来说既昂贵又耗时。在这项研究中,我们旨在开发一种人工智能程序,使用深度学习算法从 H&E 染色的幻灯片中研究和预测 p53 免疫组化染色。
方法
我们从 H&E 染色的幻灯片的全幻灯片图像中裁剪了 25849 个补丁,这些幻灯片附有相应的 p53 染色幻灯片。这些幻灯片是从 12 名接受全结肠切除术的结直肠相关性肿瘤患者的样本中制备的。我们对 H&E 染色的幻灯片的全幻灯片图像中的所有腺体进行注释,并将它们分为 3 类:p53 阳性、p53 阴性和 p53 无效。我们使用 80%的补丁进行卷积神经网络(CNN)的训练,10%用于验证,10%用于最终测试。
结果
训练有素的 CNN 根据 p53 阳性将腺体分为 2 类或 3 类,平均准确率为 0.731 至 0.754。预测的腺体 p53 免疫组织化学染色的准确性、敏感性(召回率)、特异性、阳性预测值(精度)和 F 度量分别为 0.86 至 0.91、0.73 至 0.83、0.91 至 0.92、0.82 至 0.89 和 0.77 至 0.86。
结论
我们训练有素的 CNN 可以作为结直肠相关性肿瘤病理诊断中传统 p53 免疫组织化学染色的合理替代方法,具有准确性高、节省时间和具有成本效益的特点。