Suppr超能文献

基于生物视觉信息特征和少样本学习的视觉目标跟踪算法。

Visual Object Tracking Algorithm Based on Biological Visual Information Features and Few-Shot Learning.

机构信息

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan 450001, China.

出版信息

Comput Intell Neurosci. 2022 Mar 3;2022:3422859. doi: 10.1155/2022/3422859. eCollection 2022.

Abstract

Eye tracking is currently a research hotspot in the territory of service robotics. There is an urgent need for machine vision technique in the territory of video surveillance, and biological visual object following is one of the important basic research problems. By tracking the object of interest and recording the tracking trajectory, we can extract a structure from a video. It can also analyze the abnormal behavior of groups or individuals in the video or assist the public security organs in inquiring and searching for evidence of criminal suspects, etc. Moving object following has always been one of the frontier topics in the territory of machine vision, and it has very important appliances in mobile robot positioning and navigation, multirobot formation, lunar exploration, and intelligent monitoring. Moving object following has always been one of the frontier topics in the territory of machine vision, and it has very important appliances in mobile robot positioning and navigation, multirobot formation, lunar exploration, and intelligent monitoring. Moving object following in visual surveillance is easily affected by factors such as occlusion, rapid object movement, and appearance changes, and it is difficult to solve these problems effectively with single-layer features. This paper adopts a visual object following algorithm based on visual information features and few-shot learning, which effectively improves the accuracy and robustness of tracking.

摘要

眼动追踪是目前服务机器人领域的研究热点。在视频监控领域急需机器视觉技术,而生物视觉目标跟踪是重要的基础研究问题之一。通过跟踪感兴趣的目标并记录跟踪轨迹,可以从视频中提取结构。它还可以分析视频中群体或个体的异常行为,或协助公安机关查询和搜索犯罪嫌疑人的证据等。目标跟踪一直是机器视觉领域的前沿课题之一,它在移动机器人定位和导航、多机器人编队、月球探测、智能监控等领域有着非常重要的应用。视觉监控中的目标跟踪容易受到遮挡、物体快速运动和外观变化等因素的影响,用单层特征很难有效地解决这些问题。本文采用了一种基于视觉信息特征和小样本学习的视觉目标跟踪算法,有效地提高了跟踪的准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/899f/8913116/914d6130b838/CIN2022-3422859.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验