Qin Lei, Snoussi Hichem, Abdallah Fahed
Institute Charles Delaunay, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060,10004 TROYES CEDEX, France.
Laboratory Heudiasyc, Université de Technologie de Compiègne, Rue Roger Couttolenc, CS 60319,60203 COMPIEGNE CEDEX, France.
Sensors (Basel). 2014 May 26;14(6):9380-407. doi: 10.3390/s140609380.
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.
我们提出了一种用于视觉监控视频序列中任意物体跟踪的新颖方法。这项工作的第一个贡献是一种自动特征提取方法,该方法能够在计算区域协方差描述符之前从特征池中提取紧凑的判别特征。由于特征提取方法适应于特定的感兴趣对象,我们将使用提取的特征计算的区域协方差描述符称为自适应协方差描述符。第二个贡献是提出了一种用于在跟踪过程中更新对象外观模型的弱监督方法。该方法在一段时间内积累的跟踪结果样本中执行均值漂移聚类过程,并选择一组可靠样本用于更新对象外观模型。这样,即使在跟踪错误的情况下,对象外观模型也能保持最新状态并防止受到污染。我们在真实世界视频序列上进行了对比实验,证实了所提出方法的有效性。集成了自适应协方差描述符和基于聚类的模型更新方法的跟踪系统在具有挑战性的视频序列上实现了稳定的对象跟踪。