Suppr超能文献

关于拟合具有潜在变量的动态贝叶斯网络的考量:一项蒙特卡罗研究。

Considerations for Fitting Dynamic Bayesian Networks With Latent Variables: A Monte Carlo Study.

作者信息

Reichenberg Ray E, Levy Roy, Clark Adam

机构信息

Office of Product and Program Innovation, Southern New Hampshire University, Manchester, NH, USA.

Arizona State University, Tempe, AZ, USA.

出版信息

Appl Psychol Meas. 2022 Mar;46(2):116-135. doi: 10.1177/01466216211066609. Epub 2022 Feb 10.

Abstract

Dynamic Bayesian networks (DBNs; Reye, 2004) are a promising tool for modeling student proficiency under rich measurement scenarios (Reichenberg, 2018). These scenarios often present assessment conditions far more complex than what is seen with more traditional assessments and require assessment arguments and psychometric models capable of integrating those complexities. Unfortunately, DBNs remain understudied and their psychometric properties relatively unknown. The current work aimed at exploring the properties of DBNs under a variety of realistic psychometric conditions. A Monte Carlo simulation study was conducted in order to evaluate parameter recovery for DBNs using maximum likelihood estimation. Manipulated factors included sample size, measurement quality, test length, the number of measurement occasions. Results suggested that measurement quality has the most prominent impact on estimation quality with more distinct performance categories yielding better estimation. From a practical perspective, parameter recovery appeared to be sufficient with samples as low as = 400 as long as measurement quality was not poor and at least three items were present at each measurement occasion. Tests consisting of only a single item required exceptional measurement quality in order to adequately recover model parameters.

摘要

动态贝叶斯网络(DBNs;雷伊,2004年)是一种很有前景的工具,可用于在丰富的测量场景下对学生的熟练程度进行建模(赖兴贝格,2018年)。这些场景所呈现的评估条件往往比传统评估更为复杂,需要能够整合这些复杂性的评估论证和心理测量模型。不幸的是,动态贝叶斯网络仍未得到充分研究,其心理测量特性也相对不为人知。当前的研究旨在探索动态贝叶斯网络在各种现实心理测量条件下的特性。为此进行了一项蒙特卡洛模拟研究,以评估使用最大似然估计法对动态贝叶斯网络进行参数恢复的情况。控制因素包括样本量、测量质量、测试长度、测量次数。结果表明,测量质量对估计质量的影响最为显著,性能类别越清晰,估计效果越好。从实际角度来看,只要测量质量不差且每次测量场合至少有三个项目,样本量低至n = 400时参数恢复似乎就足够了。仅由单个项目组成的测试需要极高的测量质量才能充分恢复模型参数。

相似文献

本文引用的文献

2
Dynamic Bayesian Network Modeling of Game-Based Diagnostic Assessments.基于博弈的诊断评估的动态贝叶斯网络建模。
Multivariate Behav Res. 2019 Nov-Dec;54(6):771-794. doi: 10.1080/00273171.2019.1590794. Epub 2019 Apr 3.
3
Assessing Growth in a Diagnostic Classification Model Framework.评估诊断分类模型框架中的增长。
Psychometrika. 2018 Dec;83(4):963-990. doi: 10.1007/s11336-018-9638-5. Epub 2018 Sep 27.
6
Goodness-of-Fit Testing for Latent Class Models.潜在类别模型的拟合优度检验
Multivariate Behav Res. 1993 Jul 1;28(3):375-89. doi: 10.1207/s15327906mbr2803_4.
7
Variational learning for switching state-space models.切换状态空间模型的变分学习
Neural Comput. 2000 Apr;12(4):831-64. doi: 10.1162/089976600300015619.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验