Cooperman Allison W, Weiss David J, Wang Chun
University of Minnesota-Twin Cities, Minneapolis, MN, USA.
University of Washington, Seattle, WA, USA.
Educ Psychol Meas. 2022 Aug;82(4):643-677. doi: 10.1177/00131644211033902. Epub 2021 Aug 16.
Adaptive measurement of change (AMC) is a psychometric method for measuring intra-individual change on one or more latent traits across testing occasions. Three hypothesis tests-a test, likelihood ratio test, and score ratio index-have demonstrated desirable statistical properties in this context, including low false positive rates and high true positive rates. However, the extant AMC research has assumed that the item parameter values in the simulated item banks were devoid of estimation error. This assumption is unrealistic for applied testing settings, where item parameters are estimated from a calibration sample before test administration. Using Monte Carlo simulation, this study evaluated the robustness of the common AMC hypothesis tests to the presence of item parameter estimation error when measuring omnibus change across four testing occasions. Results indicated that item parameter estimation error had at most a small effect on false positive rates and latent trait change recovery, and these effects were largely explained by the computerized adaptive testing item bank information functions. Differences in AMC performance as a function of item parameter estimation error and choice of hypothesis test were generally limited to simulees with particularly low or high latent trait values, where the item bank provided relatively lower information. These simulations highlight how AMC can accurately measure intra-individual change in the presence of item parameter estimation error when paired with an informative item bank. Limitations and future directions for AMC research are discussed.
适应性变化测量(AMC)是一种心理测量方法,用于测量个体在多个测试场合中一个或多个潜在特质的个体内部变化。三种假设检验——a检验、似然比检验和得分比指数——在这种情况下已显示出理想的统计特性,包括低假阳性率和高真阳性率。然而,现有的AMC研究假设模拟题库中的项目参数值没有估计误差。对于应用测试设置来说,这个假设是不现实的,在应用测试设置中,项目参数是在测试管理之前从校准样本中估计出来的。本研究使用蒙特卡罗模拟,评估了在测量四个测试场合的综合变化时,常见的AMC假设检验对项目参数估计误差存在的稳健性。结果表明,项目参数估计误差对假阳性率和潜在特质变化恢复最多只有很小的影响,这些影响在很大程度上可以通过计算机自适应测试题库信息函数来解释。AMC性能作为项目参数估计误差和假设检验选择的函数的差异通常仅限于潜在特质值特别低或高的模拟对象,在这些情况下,题库提供的信息相对较少。这些模拟突出了AMC与信息丰富的题库配合使用时,如何在存在项目参数估计误差的情况下准确测量个体内部变化。讨论了AMC研究的局限性和未来方向。