Suppr超能文献

从头分子设计与生成模型。

De novo molecular design and generative models.

作者信息

Meyers Joshua, Fabian Benedek, Brown Nathan

机构信息

BenevolentAI, 4-8 Maple Street, London W1T 5HD, UK.

BenevolentAI, 4-8 Maple Street, London W1T 5HD, UK.

出版信息

Drug Discov Today. 2021 Nov;26(11):2707-2715. doi: 10.1016/j.drudis.2021.05.019. Epub 2021 Jun 1.

Abstract

Molecular design strategies are integral to therapeutic progress in drug discovery. Computational approaches for de novo molecular design have been developed over the past three decades and, recently, thanks in part to advances in machine learning (ML) and artificial intelligence (AI), the drug discovery field has gained practical experience. Here, we review these learnings and present de novo approaches according to the coarseness of their molecular representation: that is, whether molecular design is modeled on an atom-based, fragment-based, or reaction-based paradigm. Furthermore, we emphasize the value of strong benchmarks, describe the main challenges to using these methods in practice, and provide a viewpoint on further opportunities for exploration and challenges to be tackled in the upcoming years.

摘要

分子设计策略是药物发现中治疗进展不可或缺的一部分。在过去三十年中,已经开发了用于从头分子设计的计算方法,并且最近,部分得益于机器学习(ML)和人工智能(AI)的进展,药物发现领域获得了实践经验。在这里,我们回顾这些经验教训,并根据其分子表示的粗略程度介绍从头方法:也就是说,分子设计是基于原子、片段还是反应范式进行建模的。此外,我们强调强大基准的价值,描述在实践中使用这些方法的主要挑战,并对未来几年有待探索的进一步机会和需要应对的挑战提供观点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验