Suppr超能文献

利用短期膳食摄入量数据来解决与人群和亚人群的通常膳食摄入量相关的研究问题:假设、统计技术和注意事项。

Using Short-Term Dietary Intake Data to Address Research Questions Related to Usual Dietary Intake among Populations and Subpopulations: Assumptions, Statistical Techniques, and Considerations.

机构信息

School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada.

Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.

出版信息

J Acad Nutr Diet. 2022 Jul;122(7):1246-1262. doi: 10.1016/j.jand.2022.03.010. Epub 2022 Mar 11.

Abstract

Many research questions focused on characterizing usual, or long-term average, dietary intake of populations and subpopulations rely on short-term intake data. The objective of this paper is to review key assumptions, statistical techniques, and considerations underpinning the use of short-term dietary intake data to make inference about usual dietary intake. The focus is on measurement error and strategies to mitigate its effects on estimated characteristics of population-level usual intake, with attention to relevant analytic issues such as accounting for survey design. Key assumptions are that short-term assessments are subject to random error only (i.e., unbiased for individual usual intake) and that some aspects of the error structure apply to all respondents, allowing estimation of this error structure in data sets with only a few repeat measures per person. Under these assumptions, a single 24-hour dietary recall per person can be used to estimate group mean intake; and with as little as one repeat on a subsample and with more complex statistical techniques, other characteristics of distributions of usual intake, such as percentiles, can be estimated. Related considerations include the number of days of data available, skewness of intake distributions, whether the dietary components of interest are consumed nearly daily by nearly everyone or episodically, the number of correlated dietary components of interest, time-varying nuisance effects related to day of week and season, and variance estimation and inference. Appropriate application of assumptions and recommended statistical techniques allows researchers to address a range of research questions, though it is imperative to acknowledge systematic error (bias) in short-term data and its implications for conclusions.

摘要

许多关注于描述人群和亚人群通常或长期平均饮食摄入的研究问题都依赖于短期摄入数据。本文的目的是回顾在使用短期饮食摄入数据来推断通常饮食摄入时所依据的关键假设、统计技术和考虑因素。重点是测量误差及其减轻对估计人群水平通常摄入特征的影响的策略,同时注意相关分析问题,如考虑调查设计。关键假设是短期评估仅受随机误差的影响(即对个体通常摄入无偏),并且误差结构的某些方面适用于所有受访者,从而允许仅对每个人进行几次重复测量的数据集来估计这种误差结构。在这些假设下,每个人的一次 24 小时膳食回忆就可以用于估计群体平均摄入量;并且在亚样本中进行一次重复,使用更复杂的统计技术,就可以估计通常摄入分布的其他特征,如百分位数。相关考虑因素包括可用数据天数、摄入量分布的偏度、感兴趣的饮食成分是否几乎每天都被几乎所有人消费或偶尔消费、感兴趣的相关饮食成分的数量、与星期几和季节有关的时变干扰效应,以及方差估计和推断。适当应用假设和推荐的统计技术可以使研究人员能够解决一系列研究问题,但必须承认短期数据中的系统误差(偏差)及其对结论的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验