Suppr超能文献

一种用于点云语义分割的新型局部-全局图卷积方法。

A Novel Local-Global Graph Convolutional Method for Point Cloud Semantic Segmentation.

作者信息

Du Zijin, Ye Hailiang, Cao Feilong

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4798-4812. doi: 10.1109/TNNLS.2022.3155282. Epub 2024 Apr 4.

Abstract

Although convolutional neural networks (CNNs) have shown good performance on grid data, they are limited in the semantic segmentation of irregular point clouds. This article proposes a novel and effective graph CNN framework, referred to as the local-global graph convolutional method (LGGCM), which can achieve short- and long-range dependencies on point clouds. The key to this framework is the design of local spatial attention convolution (LSA-Conv). The design includes two parts: generating a weighted adjacency matrix of the local graph composed of neighborhood points, and updating and aggregating the features of nodes to obtain the spatial geometric features of the local point cloud. In addition, a smooth module for central points is incorporated into the process of LSA-Conv to enhance the robustness of the convolution against noise interference by adjusting the position coordinates of the points adaptively. The learned robust LSA-Conv features are then fed into a global spatial attention module with the gated unit to extract long-range contextual information and dynamically adjust the weights of features from different stages. The proposed framework, consisting of both encoding and decoding branches, is an end-to-end trainable network for semantic segmentation of 3-D point clouds. The theoretical analysis of the approximation capabilities of LSA-Conv is discussed to determine whether the features of the point cloud can be accurately represented. Experimental results on challenging benchmarks of the 3-D point cloud demonstrate that the proposed framework achieves excellent performance.

摘要

尽管卷积神经网络(CNN)在网格数据上表现出良好性能,但它们在不规则点云的语义分割方面存在局限性。本文提出了一种新颖且有效的图卷积神经网络框架,称为局部-全局图卷积方法(LGGCM),它可以在点云上实现短程和长程依赖关系。该框架的关键在于局部空间注意力卷积(LSA-Conv)的设计。该设计包括两个部分:生成由邻域点组成的局部图的加权邻接矩阵,以及更新和聚合节点特征以获得局部点云的空间几何特征。此外,在LSA-Conv过程中加入了一个中心点平滑模块,通过自适应调整点的位置坐标来增强卷积对噪声干扰的鲁棒性。然后,将学习到的鲁棒LSA-Conv特征输入到带有门控单元的全局空间注意力模块中,以提取长程上下文信息并动态调整不同阶段特征的权重。所提出的框架由编码和解码分支组成,是一个用于三维点云语义分割的端到端可训练网络。讨论了LSA-Conv近似能力的理论分析,以确定点云的特征是否可以被准确表示。在具有挑战性的三维点云基准测试上的实验结果表明,所提出的框架取得了优异的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验