Wu Yinan, Chen Maple N, Li Sijin
Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
Metab Eng Commun. 2022 Mar 5;14:e00195. doi: 10.1016/j.mec.2022.e00195. eCollection 2022 Jun.
Plant styrylpyrones exerting well-established neuroprotective properties have attracted increasing attention in recent years. The ability to synthesize each individual styrylpyrone in engineered microorganisms is important to understanding the biological activity of medicinal plants and the complex mixtures they produce. Microbial biomanufacturing of diverse plant-derived styrylpyrones also provides a sustainable and efficient approach for the production of valuable plant styrylpyrones as daily supplements or potential drugs complementary to the prevalent agriculture-based approach. In this study, we firstly demonstrated the heterogenous biosynthesis of two 7,8-saturated styrylpyrones (7,8-dihydro-5,6-dehydrokavain (DDK) and 7,8-dihydroyangonin (DHY)) and two 7,8-unsaturated styrylpyrones (desmethoxyyangonin (DMY) and yangonin (Y)), in . Although plant styrylpyrone biosynthetic pathways have not been fully elucidated, we functionally reconstructed the recently discovered kava styrylpyrone biosynthetic pathway that has high substrate promiscuity in yeast, and combined it with upstream hydroxycinnamic acid biosynthetic pathways to produce diverse plant-derived styrylpyrones without the native plant enzymes. We optimized the pathways by engineering yeast endogenous aromatic amino acid metabolism and endogenous double bond reductases and by CRISPR-mediated -integration to overexpress the rate-limiting pathway genes. These combinatorial engineering efforts led to the first three yeast strains that can produce diverse plant-derived styrylpyrones , with the titers of DDK, DMY and Y at 4.40 μM, 1.28 μM and 0.10 μM, respectively. This work has laid the foundation for larger-scale styrylpyrone biomanufacturing and the complete biosynthesis of more complicated plant styrylpyrones.
近年来,具有公认神经保护特性的植物苯乙烯基吡喃酮越来越受到关注。在工程微生物中合成每种苯乙烯基吡喃酮的能力对于理解药用植物及其产生的复杂混合物的生物活性至关重要。多样的植物源苯乙烯基吡喃酮的微生物生物制造也为生产有价值的植物苯乙烯基吡喃酮提供了一种可持续且高效的方法,这些苯乙烯基吡喃酮可作为日常补充剂或作为基于农业的普遍方法的潜在补充药物。在本研究中,我们首次证明了两种7,8-饱和苯乙烯基吡喃酮(7,8-二氢-5,6-脱氢卡瓦因(DDK)和7,8-二氢洋甘草宁(DHY))以及两种7,8-不饱和苯乙烯基吡喃酮(去甲氧基洋甘草宁(DMY)和洋甘草宁(Y))在[具体微生物]中的异源生物合成。尽管植物苯乙烯基吡喃酮生物合成途径尚未完全阐明,但我们在酵母中功能重建了最近发现的具有高底物混杂性的卡瓦苯乙烯基吡喃酮生物合成途径,并将其与上游羟基肉桂酸生物合成途径相结合,从而在没有天然植物酶的情况下生产多样的植物源苯乙烯基吡喃酮。我们通过改造酵母内源性芳香族氨基酸代谢和内源性双键还原酶以及通过CRISPR介导的[具体整合方式]来过表达限速途径基因,从而优化了这些途径。这些组合工程努力产生了首批三种能够生产多样植物源苯乙烯基吡喃酮的酵母菌株,其中DDK、DMY和Y的产量分别为4.40 μM、1.28 μM和0.10 μM。这项工作为大规模苯乙烯基吡喃酮生物制造以及更复杂植物苯乙烯基吡喃酮的完全生物合成奠定了基础。