Han Jianing, Li Sijin
Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
Commun Chem. 2023 Feb 9;6(1):27. doi: 10.1038/s42004-023-00821-9.
Berberine is an extensively used pharmaceutical benzylisoquinoline alkaloid (BIA) derived from plants. Microbial manufacturing has emerged as a promising approach to source valuable BIAs. Here, we demonstrated the complete biosynthesis of berberine in Saccharomyces cerevisiae by engineering 19 genes including 12 heterologous genes from plants and bacteria. Overexpressing bottleneck enzymes, fermentation scale-up, and heating treatment after fermentation increased berberine titer by 643-fold to 1.08 mg L-1. This pathway also showed high efficiency to incorporate halogenated tyrosine for the synthesis of unnatural BIA derivatives that have higher therapeutical potentials. We firstly demonstrate the in vivo biosynthesis of 11-fluoro-tetrahydrocolumbamine via nine enzymatic reactions. The efficiency and promiscuity of our pathway also allow for the simultaneous incorporation of two fluorine-substituted tyrosine derivatives to 8, 3'-di-fluoro-coclaurine. This work highlights the potential of yeast as a versatile microbial biosynthetic platform to strengthen current pharmaceutical supply chain and to advance drug development.
小檗碱是一种广泛使用的源自植物的药用苄基异喹啉生物碱(BIA)。微生物制造已成为一种有前景的获取有价值BIA的方法。在此,我们通过对包括12个来自植物和细菌的异源基因在内的19个基因进行工程改造,在酿酒酵母中实现了小檗碱的完整生物合成。过表达瓶颈酶、扩大发酵规模以及发酵后进行热处理,使小檗碱产量提高了643倍,达到1.08 mg L-1。该途径在掺入卤代酪氨酸以合成具有更高治疗潜力的非天然BIA衍生物方面也表现出高效性。我们首次通过九个酶促反应在体内生物合成了11-氟-四氢小檗碱。我们途径的效率和通用性还允许将两种氟取代的酪氨酸衍生物同时掺入8, 3'-二氟-古柯碱中。这项工作突出了酵母作为一个多功能微生物生物合成平台在加强当前药物供应链和推进药物开发方面的潜力。