Suppr超能文献

了解企业数据仓库以支持临床和转化研究:企业信息技术关系、数据治理、劳动力和云计算。

Understanding enterprise data warehouses to support clinical and translational research: enterprise information technology relationships, data governance, workforce, and cloud computing.

机构信息

Roy J. and Lucille A. Carver College of Medicine and the Institute for Clinical & Translational Science, University of Iowa, Iowa City, Iowa, USA.

Division of Clinical Research Informatics, Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA.

出版信息

J Am Med Inform Assoc. 2022 Mar 15;29(4):671-676. doi: 10.1093/jamia/ocab256.

Abstract

OBJECTIVE

Among National Institutes of Health Clinical and Translational Science Award (CTSA) hubs, effective approaches for enterprise data warehouses for research (EDW4R) development, maintenance, and sustainability remain unclear. The goal of this qualitative study was to understand CTSA EDW4R operations within the broader contexts of academic medical centers and technology.

MATERIALS AND METHODS

We performed a directed content analysis of transcripts generated from semistructured interviews with informatics leaders from 20 CTSA hubs.

RESULTS

Respondents referred to services provided by health system, university, and medical school information technology (IT) organizations as "enterprise information technology (IT)." Seventy-five percent of respondents stated that the team providing EDW4R service at their hub was separate from enterprise IT; strong relationships between EDW4R teams and enterprise IT were critical for success. Managing challenges of EDW4R staffing was made easier by executive leadership support. Data governance appeared to be a work in progress, as most hubs reported complex and incomplete processes, especially for commercial data sharing. Although nearly all hubs (n = 16) described use of cloud computing for specific projects, only 2 hubs reported using a cloud-based EDW4R. Respondents described EDW4R cloud migration facilitators, barriers, and opportunities.

DISCUSSION

Descriptions of approaches to how EDW4R teams at CTSA hubs work with enterprise IT organizations, manage workforces, make decisions about data, and approach cloud computing provide insights for institutions seeking to leverage patient data for research.

CONCLUSION

Identification of EDW4R best practices is challenging, and this study helps identify a breadth of viable options for CTSA hubs to consider when implementing EDW4R services.

摘要

目的

在国立卫生研究院临床与转化科学奖 (CTSA) 中心中,对于研究型企业数据仓库 (EDW4R) 的开发、维护和可持续性,仍缺乏有效的方法。本研究的目的是在学术医疗中心和技术的更广泛背景下,了解 CTSA EDW4R 的运作。

材料和方法

我们对来自 20 个 CTSA 中心的信息学负责人的半结构化访谈记录进行了有针对性的内容分析。

结果

受访者提到了由卫生系统、大学和医学院信息技术 (IT) 组织提供的服务,称为“企业信息技术 (IT)”。75%的受访者表示,他们所在中心提供 EDW4R 服务的团队与企业 IT 是分开的;EDW4R 团队与企业 IT 之间的紧密关系对成功至关重要。高管领导的支持使 EDW4R 人员配备管理方面的挑战变得更容易应对。数据治理似乎仍在进行中,因为大多数中心报告了复杂且不完整的流程,特别是对于商业数据共享。虽然几乎所有中心(n=16)都描述了云计算在特定项目中的使用,但只有 2 个中心报告了使用基于云的 EDW4R。受访者描述了 EDW4R 云迁移的促进因素、障碍和机会。

讨论

对 CTSA 中心的 EDW4R 团队如何与企业 IT 组织合作、管理劳动力、做出有关数据的决策以及采用云计算的方法的描述,为希望利用患者数据进行研究的机构提供了见解。

结论

确定 EDW4R 的最佳实践具有挑战性,本研究有助于确定 CTSA 中心在实施 EDW4R 服务时可以考虑的广泛可行选择。

相似文献

10
Exploratory study of the underutilization of CTSA module services.CTSA模块服务利用不足的探索性研究。
J Clin Transl Sci. 2022 Aug 10;6(1):e114. doi: 10.1017/cts.2022.440. eCollection 2022.

引用本文的文献

2
A maturity model for Clinical Trials Management Ecosystem.临床试验管理生态系统的成熟度模型。
J Clin Transl Sci. 2025 Jan 22;9(1):e28. doi: 10.1017/cts.2024.1168. eCollection 2025.

本文引用的文献

4
Creating and implementing a COVID-19 recruitment Data Mart.创建和实施 COVID-19 招聘数据集市。
J Biomed Inform. 2021 May;117:103765. doi: 10.1016/j.jbi.2021.103765. Epub 2021 Mar 30.
10
Ten principles for data sharing and commercialization.数据共享和商业化的十大原则。
J Am Med Inform Assoc. 2021 Mar 1;28(3):646-649. doi: 10.1093/jamia/ocaa260.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验