Suppr超能文献

关键护理数据库高级研究(CEDAR):一种利用电子健康记录数据为重症监护病房提供支持的自动化方法。

Critical carE Database for Advanced Research (CEDAR): An automated method to support intensive care units with electronic health record data.

机构信息

Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States.

出版信息

J Biomed Inform. 2021 Jun;118:103789. doi: 10.1016/j.jbi.2021.103789. Epub 2021 Apr 14.

Abstract

Patients treated in an intensive care unit (ICU) are critically ill and require life-sustaining organ failure support. Existing critical care data resources are limited to a select number of institutions, contain only ICU data, and do not enable the study of local changes in care patterns. To address these limitations, we developed the Critical carE Database for Advanced Research (CEDAR), a method for automating extraction and transformation of data from an electronic health record (EHR) system. Compared to an existing gold standard of manually collected data at our institution, CEDAR was statistically similar in most measures, including patient demographics and sepsis-related organ failure assessment (SOFA) scores. Additionally, CEDAR automated data extraction obviated the need for manual collection of 550 variables. Critically, during the spring 2020 COVID-19 surge in New York City, a modified version of CEDAR supported pandemic response efforts, including clinical operations and research. Other academic medical centers may find value in using the CEDAR method to automate data extraction from EHR systems to support ICU activities.

摘要

患者在重症监护病房(ICU)接受治疗,病情危急,需要维持生命的器官衰竭支持。现有的重症监护数据资源仅限于少数机构,仅包含 ICU 数据,并且无法研究护理模式的局部变化。为了解决这些限制,我们开发了 Critical carE Database for Advanced Research(CEDAR),这是一种从电子病历(EHR)系统中自动提取和转换数据的方法。与我们机构现有的手动收集数据的黄金标准相比,CEDAR 在大多数指标上具有统计学相似性,包括患者人口统计学和与脓毒症相关的器官衰竭评估(SOFA)评分。此外,CEDAR 自动化数据提取免除了手动收集 550 个变量的需要。至关重要的是,在 2020 年春季纽约市 COVID-19 疫情高峰期,CEDAR 的一个修改版本支持了大流行应对工作,包括临床运营和研究。其他学术医疗中心可能会发现使用 CEDAR 方法从 EHR 系统中自动提取数据以支持 ICU 活动具有价值。

相似文献

引用本文的文献

3
SOFA in sepsis: with or without GCS.SOFA 在脓毒症中的应用:是否联合 GCS。
Eur J Med Res. 2024 May 24;29(1):296. doi: 10.1186/s40001-024-01849-w.
6
Effect of Sepsis on Death as Modified by Solid Organ Transplantation.脓毒症对死亡的影响因实体器官移植而改变。
Open Forum Infect Dis. 2023 Mar 18;10(4):ofad148. doi: 10.1093/ofid/ofad148. eCollection 2023 Apr.

本文引用的文献

4
Clinical Characteristics of Covid-19 in New York City.纽约市新冠肺炎的临床特征
N Engl J Med. 2020 Jun 11;382(24):2372-2374. doi: 10.1056/NEJMc2010419. Epub 2020 Apr 17.
9
Identifying Novel Sepsis Subphenotypes Using Temperature Trajectories.利用体温轨迹识别新型脓毒症亚表型
Am J Respir Crit Care Med. 2019 Aug 1;200(3):327-335. doi: 10.1164/rccm.201806-1197OC.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验