School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
Nanoscale Horiz. 2022 May 3;7(5):463-479. doi: 10.1039/d2nh00006g.
HO sensing is required in various biological and industrial applications, for which electrochemical sensing is a promising choice among various sensing technologies. Electrodes and electrocatalysts strongly influence the performance of electrochemical HO sensors. Significant efforts have been devoted to electrode nanostructural designs and nanomaterial-based electrocatalysts. Here, we review the design strategies for electrodes and electrocatalysts used in electrochemical HO sensors. We first summarize electrodes in different structures, including rotation disc electrodes, freestanding electrodes, all-in-one electrodes, and representative commercial HO probes. Next, we discuss the design strategies used in recent studies to increase the number of active sites and intrinsic activities of electrocatalysts for HO redox reactions, including nanoscale pore structuring, conductive supports, reducing the catalyst size, alloying, doping, and tuning the crystal facets. Finally, we provide our perspectives on the future research directions in creating nanoscale structures and nanomaterials to enable advanced electrochemical HO sensors in practical applications.
HO 传感在各种生物和工业应用中是必需的,电化学传感是各种传感技术中极具前景的选择。电极和电催化剂对电化学 HO 传感器的性能有很大的影响。人们为电极的纳米结构设计和基于纳米材料的电催化剂付出了巨大的努力。在这里,我们综述了用于电化学 HO 传感器的电极和电催化剂的设计策略。我们首先总结了不同结构的电极,包括旋转圆盘电极、独立电极、一体化电极和有代表性的商业 HO 探头。接下来,我们讨论了最近研究中为增加 HO 氧化还原反应的电催化剂的活性位点和本征活性而采用的设计策略,包括纳米级孔结构、导电基底、催化剂尺寸减小、合金化、掺杂和晶面调谐。最后,我们对创造纳米级结构和纳米材料以在实际应用中实现先进的电化学 HO 传感器的未来研究方向提出了看法。