Suppr超能文献

乳腺癌患者报告疲劳的长期纵向模式:基于群组的轨迹分析。

Long-Term Longitudinal Patterns of Patient-Reported Fatigue After Breast Cancer: A Group-Based Trajectory Analysis.

机构信息

Gustave Roussy, Medical Oncology, Villejuif, France.

INSERM Unit 981-Molecular Predictors and New Targets in Oncology, Gustave Roussy, University Paris-Saclay, Villejuif, France.

出版信息

J Clin Oncol. 2022 Jul 1;40(19):2148-2162. doi: 10.1200/JCO.21.01958. Epub 2022 Mar 15.

Abstract

PURPOSE

Fatigue is recognized as one of the most burdensome and long-lasting adverse effects of cancer and cancer treatment. We aimed to characterize long-term fatigue trajectories among breast cancer survivors.

METHODS

We performed a detailed longitudinal analysis of fatigue using a large ongoing national prospective clinical study (CANcer TOxicity, ClinicalTrials.gov identifier: NCT01993498) of patients with stage I-III breast cancer treated from 2012 to 2015. Fatigue was assessed at diagnosis and year 1, 2, and 4 postdiagnosis. Baseline clinical, sociodemographic, behavioral, tumor-related, and treatment-related characteristics were available. Trajectories of fatigue and risk factors of trajectory-group membership were identified by iterative estimates of group-based trajectory models.

RESULTS

Three trajectory groups were identified for severe global fatigue (n = 4,173). Twenty-one percent of patients were in the -risk group, having risk estimates of severe global fatigue of 94.8% (95% CI, 86.6 to 100.0) at diagnosis and 64.6% (95% CI, 59.2 to 70.1) at year 4; 19% of patients clustered in the group with risk estimates of severe global fatigue of 13.8% (95% CI, 6.7 to 20.9) at diagnosis and 64.5% (95% CI, 57.3 to 71.8) at year 4; 60% were in the -risk group with risk estimates of 3.6% (95% CI, 2.5 to 4.7) at diagnosis and 9.6% (95% CI, 7.5 to 11.7) at year 4. The distinct dimensions of fatigue clustered in different trajectory groups than those identified by severe global fatigue, being differentially affected by sociodemographic, clinical, and treatment-related factors.

CONCLUSION

Our findings highlight the multidimensional nature of cancer-related fatigue and the complexity of its risk factors. This study helps to identify patients with increased risk of severe fatigue and to inform personalized interventions to ameliorate this problem.

摘要

目的

疲劳是癌症及其治疗最具负担和持续时间最长的不良反应之一。我们旨在描述乳腺癌幸存者的长期疲劳轨迹。

方法

我们使用正在进行的全国性前瞻性临床研究(CANcer TOxicity,ClinicalTrials.gov 标识符:NCT01993498)对 2012 年至 2015 年期间接受 I-III 期乳腺癌治疗的患者进行了详细的纵向疲劳分析。在诊断时以及诊断后 1、2 和 4 年评估疲劳。基线临床、社会人口统计学、行为、肿瘤相关和治疗相关特征可用。通过迭代估计基于群组的轨迹模型来确定疲劳轨迹和轨迹组归属的危险因素。

结果

对于严重的全身性疲劳(n=4173),确定了三个轨迹组。21%的患者处于高风险组,诊断时严重全身性疲劳的风险估计值为 94.8%(95%CI,86.6 至 100.0),4 年后为 64.6%(95%CI,59.2 至 70.1);19%的患者聚类在低风险组,诊断时严重全身性疲劳的风险估计值为 13.8%(95%CI,6.7 至 20.9),4 年后为 64.5%(95%CI,57.3 至 71.8);60%的患者处于低风险组,诊断时的风险估计值为 3.6%(95%CI,2.5 至 4.7),4 年后为 9.6%(95%CI,7.5 至 11.7)。疲劳的不同维度聚类在不同的轨迹组中,而不是通过严重的全身性疲劳来识别,这受到社会人口统计学、临床和治疗相关因素的不同影响。

结论

我们的研究结果强调了癌症相关疲劳的多维性质及其危险因素的复杂性。本研究有助于识别出有严重疲劳风险的患者,并为改善这一问题提供个性化干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2be4/9242405/bf1fc85bc540/jco-40-2148-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验