Suppr超能文献

使用参数化 sinc 滤波器和级联 GRU 从自发语音进行连续 TBI 监测

Continuous TBI Monitoring From Spontaneous Speech Using Parametrized Sinc Filters and a Cascading GRU.

出版信息

IEEE J Biomed Health Inform. 2022 Jul;26(7):3517-3528. doi: 10.1109/JBHI.2022.3158840. Epub 2022 Jul 1.

Abstract

Traumatic Brain Injury (TBI) is caused by a head injury that affects the brain, impairing cognitive and communication function and resulting in speech and language disorders. Over 80,000 individuals in the US suffer from long-term TBI disabilities and continuous monitoring after TBI is essential to facilitate rehabilitation and prevent regression. Prior work has demonstrated the feasibility of TBI monitoring from speech by leveraging advancements in Artificial Intelligence (AI) and speech processing technology. However, much of prior work explored TBI detection using scripted speech tasks such as diadochokinesis tests or reading a passage. Such scripted approaches require active user involvement that significantly burdens participants. Moreover, they are episodic, are not realistic, and do not provide a longitudinal picture of the user's TBI condition. This study proposes a continuous TBI monitoring from changes in acoustic features of spontaneous speech collected passively using the smartphone. Low-level acoustic features are extracted using parametrized Sinc filters (pSinc) that are then classified TBI (yes/no) using a cascading Gated Recurrent Unit (cGRU). The cGRU model utilizes a cell gate unit in the GRU to store and incorporate each individual's prediction history as prior knowledge into the model. In rigorous evaluation, our proposed method outperformed prior TBI classification methods on conversational speech recorded during patient-therapist discourses following TBI, achieving 83.87% balanced accuracy. Furthermore, unique words that are important in TBI prediction were identified using SHapley Additive exPlanations (SHAP). A correlation was also found between features acquired by the proposed method and coordination deficits following TBI.

摘要

创伤性脑损伤 (TBI) 是由头部受伤引起的,会影响大脑,损害认知和沟通功能,导致言语和语言障碍。美国有超过 8 万人患有长期 TBI 残疾,TBI 后需要持续监测,这对于促进康复和防止病情恶化至关重要。先前的工作已经证明,通过利用人工智能 (AI) 和语音处理技术的进步,可以从语音中监测 TBI。然而,之前的大部分工作都是通过脚本化的语音任务(如双音节词测试或朗读短文)来探索 TBI 的检测。这种脚本化的方法需要用户积极参与,这会给参与者带来很大的负担。此外,它们是阶段性的,不现实,也不能提供用户 TBI 状况的纵向图像。本研究提出了一种使用智能手机被动采集的自发语音的声学特征进行连续 TBI 监测的方法。使用参数化 sinc 滤波器 (pSinc) 提取底层声学特征,然后使用级联门控循环单元 (cGRU) 将其分类为 TBI(是/否)。cGRU 模型在 GRU 中使用一个单元门来存储和将每个人的预测历史作为先验知识纳入模型。在严格的评估中,我们提出的方法在 TBI 后患者-治疗师对话中记录的会话语音上优于先前的 TBI 分类方法,达到了 83.87%的平衡准确率。此外,还使用 Shapley Additive exPlanations (SHAP) 确定了在 TBI 预测中重要的独特单词。还发现了所提出的方法获取的特征与 TBI 后协调缺陷之间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验