Suppr超能文献

细菌砷代谢及其在砷生物修复中的作用。

Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation.

机构信息

UGC-Centre for Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.

出版信息

Curr Microbiol. 2022 Mar 15;79(5):131. doi: 10.1007/s00284-022-02810-y.

Abstract

Arsenic contaminations, often adversely influencing the living organisms, including plants, animals, and the microbial communities, are of grave apprehension. Many physical, chemical, and biological techniques are now being explored to minimize the adverse affects of arsenic toxicity. Bioremediation of arsenic species using arsenic loving bacteria has drawn much attention. Arsenate and arsenite are mostly uptaken by bacteria through aquaglycoporins and phosphate transporters. After entering arsenic inside bacterial cell arsenic get metabolized (e.g., reduction, oxidation, methylation, etc.) into different forms. Arsenite is sequentially methylated into monomethyl arsenic acid (MMA) and dimethyl arsenic acid (DMA), followed by a transformation of less toxic, volatile trimethyl arsenic acid (TMA). Passive remediation techniques, including adsorption, biomineralization, bioaccumulation, bioleaching, and so on are exploited by bacteria. Rhizospheric bacterial association with some specific plants enhances phytoextraction process. Arsenic-resistant rhizospheric bacteria have immense role in enhancement of crop plant growth and development, but their applications are not well studied till date. Emerging techniques like phytosuction separation (PS-S) have a promising future, but still light to be focused on these techniques. Plant-associated bioremediation processes like phytoextraction and phytosuction separation (PS-S) techniques might be modified by treating with potent bacteria for furtherance.

摘要

砷污染常常对包括植物、动物和微生物群落在内的生物体产生不利影响,令人深感忧虑。目前,人们正在探索许多物理、化学和生物技术,以尽量减少砷毒性的不利影响。利用喜欢砷的细菌进行砷物种的生物修复已经引起了广泛关注。砷酸盐和亚砷酸盐主要通过 aquaglycoporins 和磷酸盐转运体被细菌吸收。进入细菌细胞内后,砷会被代谢(例如还原、氧化、甲基化等)成不同的形式。亚砷酸盐会被依次甲基化为一甲基砷酸(MMA)和二甲基砷酸(DMA),然后转化为毒性较低、挥发性的三甲基砷酸(TMA)。细菌利用被动修复技术,包括吸附、生物矿化、生物积累、生物浸出等。根际细菌与一些特定的植物结合,增强了植物提取过程。砷抗性根际细菌在促进作物植物生长和发育方面发挥着重要作用,但它们的应用尚未得到充分研究。新兴技术,如植物吸收分离(PS-S)具有广阔的前景,但仍需要关注这些技术。通过用有效细菌处理,可以对植物相关的生物修复过程(如植物提取和植物吸收分离(PS-S)技术)进行修改,以进一步推进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验