Suppr超能文献

基于特征的全球变化生态学方法:从描述到预测的转变。

Trait-based approaches to global change ecology: moving from description to prediction.

机构信息

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.

Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA.

出版信息

Proc Biol Sci. 2022 Mar 30;289(1971):20220071. doi: 10.1098/rspb.2022.0071. Epub 2022 Mar 16.

Abstract

Trait-based approaches are increasingly recognized as a tool for understanding ecosystem re-assembly and function under intensifying global change. Here we synthesize trait-based research globally ( = 865 studies) to examine the contexts in which traits may be used for global change prediction. We find that exponential growth in the field over the last decade remains dominated by descriptive studies of terrestrial plant morphology, highlighting significant opportunities to expand trait-based thinking across systems and taxa. Very few studies (less than 3%) focus on predicting ecological effects of global change, mostly in the past 5 years and via singular traits that mediate abiotic limits on species distribution. Beyond organism size (the most examined trait), we identify over 2500 other morphological, physiological, behavioural and life-history traits known to mediate environmental filters of species' range and abundance as candidates for future predictive global change work. Though uncommon, spatially explicit process models-which mechanistically link traits to changes in organism distributions and abundance-are among the most promising frameworks for holistic global change prediction at scales relevant for conservation decision-making. Further progress towards trait-based forecasting requires addressing persistent barriers including (1) matching scales of multivariate trait and environment data to focal processes disrupted by global change, and (2) propagating variation in trait and environmental parameters throughout process model functions using simulation.

摘要

基于特征的方法越来越被认为是理解在全球变化加剧的情况下生态系统重组和功能的一种工具。在这里,我们综合了全球范围内基于特征的研究(=865 项研究),以检验在哪些情况下可以使用特征来进行全球变化预测。我们发现,过去十年中该领域呈指数级增长,仍主要由陆地植物形态学的描述性研究主导,这突显了在跨系统和分类群扩展基于特征的思维的巨大机会。很少有研究(不到 3%)专注于预测全球变化对生态的影响,这些研究大多是在过去 5 年中进行的,且仅通过单一特征来调节物种分布对生物限制的影响。除了生物体大小(研究最多的特征)之外,我们还确定了超过 2500 个其他形态、生理、行为和生活史特征,这些特征被认为是未来预测全球变化工作的候选特征,它们可以调节物种分布和丰度的环境筛选器。虽然不常见,但具有空间显式的过程模型(通过特征将物种分布和丰度的变化联系起来的机制模型)是在与保护决策相关的规模上进行整体全球变化预测的最有前途的框架之一。要实现基于特征的预测的进一步进展,需要解决一些持续存在的障碍,包括:(1)将多元特征和环境数据的规模与被全球变化扰乱的焦点过程相匹配;(2)使用模拟在过程模型函数中传播特征和环境参数的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c566/8924753/4fdae806c931/rspb20220071f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验