Suppr超能文献

外科 Apgar 评分可预测食管切除术的并发症:系统评价和荟萃分析。

Surgical Apgar score could predict complications after esophagectomy: a systematic review and meta-analysis.

机构信息

Department of Cardiothoracic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China.

Department of Cardiothoracic Surgery, Jinling Hospital, Southern Medical University, Guangzhou, China.

出版信息

Interact Cardiovasc Thorac Surg. 2022 Jun 15;35(1). doi: 10.1093/icvts/ivac045.

Abstract

OBJECTIVES

Esophagectomy is the most effective treatment for oesophageal cancer, although the incidence of postoperative complications remains high. Severe major complications, such as intrathoracic anastomotic leakage, are costly and life-threatening to patients. Therefore, early identification of postoperative complications is essential. The surgical Apgar score (SAS) was introduced by Gawande and colleagues to predict major complications after oesophagectomy. Several studies were carried out with inconsistent results.

METHODS

PubMed, Embase, Web of Science, ClinicalTrials.gov and the Cochrane Library were searched for studies regarding SAS and oesophagectomy. Forest plots were generated using a random-effects model to investigate the actual predictive value of SAS in identifying major complications after oesophagectomy.

RESULTS

Nine retrospective cohort studies were finally identified from selected electronic databases. The meta-analysis demonstrated that SAS could forecast the incidence of postoperative complications (odds ratio = 1.82, 95% confidence interval: 1.43-2.33, P < 0.001). Subgroup analysis validated the predictive value of SAS whether as continuous or discrete variables. In addition, a meta-analysis of 4 studies demonstrated that SAS could predict the incidence of pulmonary complications (odds ratio = 2.32, 95% confidence interval: 1.61-3.36, P < 0.001). Significant heterogeneity but no publication bias was found.

CONCLUSIONS

Lower SAS scores could predict the incidence of major morbidities and pulmonary complications after oesophagectomy. Significant heterogeneity limits the reliability of the results, even if publication bias is not observed. More high-quality prospective research should be conducted to verify the findings. PROSPERO registration ID: CRD42020209004.

摘要

目的

食管癌的最有效治疗方法是食管切除术,但术后并发症的发生率仍然很高。严重的主要并发症,如胸内吻合口漏,对患者来说是昂贵且危及生命的。因此,早期识别术后并发症至关重要。Gawande 及其同事引入了手术 Apgar 评分(SAS)来预测食管切除术后的主要并发症。已经进行了几项研究,但结果不一致。

方法

在 PubMed、Embase、Web of Science、ClinicalTrials.gov 和 Cochrane Library 中搜索有关 SAS 和食管切除术的研究。使用随机效应模型生成森林图,以研究 SAS 在识别食管切除术后主要并发症方面的实际预测价值。

结果

最终从选定的电子数据库中确定了 9 项回顾性队列研究。荟萃分析表明,SAS 可以预测术后并发症的发生率(优势比=1.82,95%置信区间:1.43-2.33,P<0.001)。亚组分析验证了 SAS 作为连续或离散变量的预测价值。此外,对 4 项研究的荟萃分析表明,SAS 可以预测肺部并发症的发生率(优势比=2.32,95%置信区间:1.61-3.36,P<0.001)。存在显著异质性,但未发现发表偏倚。

结论

较低的 SAS 评分可以预测食管切除术后主要发病率和肺部并发症的发生率。显著的异质性限制了结果的可靠性,即使没有发现发表偏倚。应进行更多高质量的前瞻性研究来验证这些发现。PROSPERO 注册号:CRD42020209004。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1b1/9714643/1bf51ecfe2b1/ivac045f7.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验