Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.
Department of Radiation Oncology, The University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, Birmingham, Alabama 35294, United States.
ACS Appl Bio Mater. 2022 Apr 18;5(4):1670-1682. doi: 10.1021/acsabm.2c00063. Epub 2022 Mar 16.
Nearly 20% of HER2-positive breast cancers develop resistance to HER2-targeted therapies requiring the use of advanced therapies. Silencing RNA therapy may be a powerful modality for treating resistant HER2 cancers due to its high specificity and low toxicity. However, the systemic administration of siRNAs requires a safe and efficient delivery platform because of siRNA's low stability in physiological fluids, inefficient cellular uptake, immunoreactivity, and rapid clearance. We have developed theranostic polymeric vesicles to overcome these hurdles for encapsulation and delivery of small functional molecules and PARP1 siRNA for in vivo delivery to breast cancer tumors. The 100 nm polymer vesicles were assembled from biodegradable and non-ionic poly(-vinylpyrrolidone)--poly(dimethylsiloxane)--poly(-vinylpyrrolidone) triblock copolymer PVPON-PDMS-PVPON using nanoprecipitation and thin-film hydration. We demonstrated that the vesicles assembled from the copolymer covalently tagged with the Cy5.5 fluorescent dye for in vivo imaging could also encapsulate the model drug with high loading efficiency (40%). The dye-loaded vesicles were accumulated in tumors after 18 h circulation in 4TR breast tumor-bearing mice via passive targeting. We found that PARP1 siRNA encapsulated into the vesicles was released intact (13%) into solution by the therapeutic ultrasound treatment as quantified by gel electrophoresis. The PARP1 siRNA-loaded polymersomes inhibited the proliferation of MDA-MB-361TR cells by 34% after 6 days of treatment by suppressing the NF-kB signaling pathway, unlike their scrambled siRNA-loaded counterparts. Finally, the treatment by PARP1 siRNA-loaded vesicles prolonged the survival of the mice bearing 4T1 breast cancer xenografts, with the 4-fold survival increase, unlike the untreated mice after 3 weeks following the treatment. These biodegradable, non-ionic PVPON-PDMS-PVPON polymeric nanovesicles capable of the efficient encapsulation and delivery of PARP1 siRNA to successfully knock down PARP1 in vivo can provide an advanced platform for the development of precision-targeted therapeutic carriers, which could help develop highly effective drug delivery nanovehicles for breast cancer gene therapy.
近 20%的 HER2 阳性乳腺癌对 HER2 靶向治疗产生耐药性,需要使用先进的治疗方法。由于 RNA 沉默疗法具有高度特异性和低毒性,因此可能是治疗耐药性 HER2 癌症的一种强大方式。然而,由于 siRNA 在生理流体中的稳定性低、细胞摄取效率低、免疫反应性和快速清除率,siRNA 的系统给药需要一种安全有效的递送平台。我们已经开发了治疗性聚合物囊泡,以克服封装和递送小功能分子以及 PARP1 siRNA 用于体内递送至乳腺癌肿瘤的这些障碍。使用纳米沉淀和薄膜水合作用,由可生物降解的非离子型聚(-乙烯基吡咯烷酮)-聚(二甲基硅氧烷)-聚(-乙烯基吡咯烷酮)三嵌段共聚物 PVPON-PDMS-PVPON 组装成 100nm 聚合物囊泡。我们证明,通过共价标记 Cy5.5 荧光染料的共聚物组装的囊泡也可以以高载药量(40%)封装模型药物。在 4TR 荷瘤小鼠中循环 18 小时后,通过被动靶向,染料负载的囊泡在肿瘤中积累。我们发现,包封在囊泡中的 PARP1 siRNA 在治疗性超声处理下以电泳定量的方式完整释放(13%)到溶液中。与未负载 siRNA 的聚合物囊泡相比,负载 PARP1 siRNA 的聚合物囊泡通过抑制 NF-κB 信号通路,在治疗 6 天后抑制 MDA-MB-361TR 细胞的增殖达 34%。最后,与未经治疗的小鼠相比,负载 PARP1 siRNA 的囊泡的治疗延长了携带 4T1 乳腺癌异种移植的小鼠的存活时间,存活时间增加了 4 倍,在治疗后 3 周。这些可生物降解的、非离子型的 PVPON-PDMS-PVPON 聚合物纳米囊泡能够有效地封装和递送至体内的 PARP1 siRNA,成功地在体内敲低 PARP1,可以为开发精确靶向治疗载体提供一个先进的平台,这可能有助于开发用于乳腺癌基因治疗的高效药物递送纳米载体。