Suppr超能文献

乳过氧化物酶、过氧化物、硫氰酸盐抗菌系统:巯基氧化与抗菌作用的相关性

Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action.

作者信息

Thomas E L, Aune T M

出版信息

Infect Immun. 1978 May;20(2):456-63. doi: 10.1128/iai.20.2.456-463.1978.

Abstract

The antimicrobial activity of the lactoperoxidase, peroxide, thiocyanate system against Escherichia coli was directly related to the oxidation of bacterial sulfhydryls. Lactoperoxidase catalyzed the oxidation of thiocyanate, which resulted in the accumulation of hypothiocyanite ion, OSCN-. A portion of the bacterial sulfhydryls were oxidized by OSCN- to yield sulfenic acid and sulfenyl thiocyanate derivatives. The remaining sulfhydryls were not oxidized, although OSCN- was present in large excess. The oxidation of sulfhydryls to sulfenyl derivatives inhibited bacterial respiration. This inhibition could be reversed by adding sulfhydryl compounds to reduce the sulfenyl derivatives and the excess OSCN-. Also, this inhibition could be reversed by washing the cells so as to remove the excess unreacted OSCN-. After washing, the bacteria underwent a time-dependent recovery of their sulfhydryl content. This recovery resulted in recovery of the ability to respire. The inhibited cells were viable if diluted and plated shortly after the incubation with the lactoperoxidase, peroxide, thiocyanate system. On the other hand, long-term incubation in the presence of the excess OSCN- resulted in loss of viability. Also, the inhibition of respiration became irreversible. During this long-term incubation, the excess OSCN- was consumed and the sulfenyl derivatives disappeared.

摘要

乳过氧化物酶、过氧化氢、硫氰酸盐体系对大肠杆菌的抗菌活性与细菌巯基的氧化直接相关。乳过氧化物酶催化硫氰酸盐的氧化,导致次硫氰酸根离子(OSCN-)的积累。一部分细菌巯基被OSCN-氧化,生成亚磺酸和亚磺酰硫氰酸盐衍生物。尽管OSCN-大量过量,但其余的巯基并未被氧化。巯基氧化为亚磺酰衍生物会抑制细菌呼吸。通过添加巯基化合物以还原亚磺酰衍生物和过量的OSCN-,这种抑制作用可以被逆转。此外,通过洗涤细胞以去除过量未反应的OSCN-,这种抑制作用也可以被逆转。洗涤后,细菌的巯基含量会随时间恢复。这种恢复导致呼吸能力的恢复。如果在与乳过氧化物酶、过氧化氢、硫氰酸盐体系孵育后不久进行稀释和平板接种,受抑制的细胞仍具有活力。另一方面,在过量OSCN-存在下长期孵育会导致活力丧失。此外,呼吸抑制变得不可逆。在这种长期孵育过程中,过量的OSCN-被消耗,亚磺酰衍生物消失。

相似文献

2
Kinetics of hypothiocyanite production during peroxidase-catalyzed oxidation of thiocyanate.
Biochim Biophys Acta. 1982 Jun 4;704(2):204-14. doi: 10.1016/0167-4838(82)90147-9.
5
Inhibition of dental plaque acid production by the salivary lactoperoxidase antimicrobial system.
Infect Immun. 1981 Oct;34(1):208-14. doi: 10.1128/iai.34.1.208-214.1981.
6
Susceptibility of Escherichia coli to bactericidal action of lactoperoxidase, peroxide, and iodide or thiocyanate.
Antimicrob Agents Chemother. 1978 Feb;13(2):261-5. doi: 10.1128/AAC.13.2.261.
9

引用本文的文献

1
The role of metals in hypothiocyanite resistance in .
J Bacteriol. 2024 Aug 22;206(8):e0009824. doi: 10.1128/jb.00098-24. Epub 2024 Jul 17.
3
The therapeutic potential of thiocyanate and hypothiocyanous acid against pulmonary infections.
Free Radic Biol Med. 2024 Jul;219:104-111. doi: 10.1016/j.freeradbiomed.2024.04.217. Epub 2024 Apr 11.
4
The role of metals in hypothiocyanite resistance in .
bioRxiv. 2024 Mar 8:2024.03.07.583962. doi: 10.1101/2024.03.07.583962.
5
Hypothiocyanite and host-microbe interactions.
Mol Microbiol. 2023 Mar;119(3):302-311. doi: 10.1111/mmi.15025. Epub 2023 Feb 6.
6
A newly identified flavoprotein disulfide reductase Har protects Streptococcus pneumoniae against hypothiocyanous acid.
J Biol Chem. 2022 Sep;298(9):102359. doi: 10.1016/j.jbc.2022.102359. Epub 2022 Aug 9.
7
What Is New in the Anti- Clinical Development Pipeline Since the 2017 WHO Alert?
Front Cell Infect Microbiol. 2022 Jul 8;12:909731. doi: 10.3389/fcimb.2022.909731. eCollection 2022.
8
Resistance of Streptococcus pneumoniae to Hypothiocyanous Acid Generated by Host Peroxidases.
Infect Immun. 2022 Mar 17;90(3):e0053021. doi: 10.1128/IAI.00530-21. Epub 2022 Jan 18.
9
Microbicidal Activity of Hypothiocyanite against Pneumococcus.
Antibiotics (Basel). 2021 Oct 28;10(11):1313. doi: 10.3390/antibiotics10111313.
10
Phenolic Compounds of sp. as Modulators of Oral Cavity Lactoperoxidase System.
Antioxidants (Basel). 2021 Apr 26;10(5):676. doi: 10.3390/antiox10050676.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
LACTOPEROXIDASE. II. ISOLATION.
J Biol Chem. 1963 Aug;238:2843-9.
4
Anti-streptococcal activity of lactoperoxidase III.
Proc Soc Exp Biol Med. 1962 Dec;111:585-8. doi: 10.3181/00379727-111-27862.
5
Tissue sulfhydryl groups.
Arch Biochem Biophys. 1959 May;82(1):70-7. doi: 10.1016/0003-9861(59)90090-6.
7
Antistreptococcal activity of lactoperoxidase.
J Bacteriol. 1969 Feb;97(2):635-9. doi: 10.1128/jb.97.2.635-639.1969.
8
The antibacterial action of lactoperoxidase. The nature of the bacterial inhibitor.
Biochem J. 1970 May;117(4):779-90. doi: 10.1042/bj1170779.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验