Suppr超能文献

高通量筛选测定大化学数据库。

High-Throughput Screening Assay Profiling for Large Chemical Databases.

机构信息

Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.

Department of Chemistry, Rutgers University, Camden, NJ, USA.

出版信息

Methods Mol Biol. 2022;2474:125-132. doi: 10.1007/978-1-0716-2213-1_12.

Abstract

High-throughput screening (HTS) techniques are increasingly being adopted by a variety of fields of toxicology. Notably, large-scale research efforts from government, industrial, and academic laboratories are screening millions of chemicals against a variety of biomolecular targets, producing an enormous amount of publicly available HTS assay data. These HTS assay data provide toxicologists important information on how chemicals interact with different biomolecular targets and provide illustrations of potential toxicity mechanisms. Open public data repositories, such as the National Institutes of Health's PubChem ( http://pubchem.ncbi.nlm.nih.gov ), were established to accept, store, and share HTS data. Through the PubChem website, users can rapidly obtain the PubChem assay results for compounds by using different chemical identifiers (including SMILES, InChIKey, IUPAC names, etc.). However, obtaining these data in a user-friendly format suitable for modeling and other informatics analysis (e.g., gathering PubChem data for hundreds or thousands of chemicals in a modeling friendly format) directly through the PubChem web portal is not feasible. This chapter aims to introduce two approaches to obtain the HTS assay results for large datasets of compounds from the PubChem portal. First, programmatic access via PubChem's PUG-REST web service using the Python programming language will be described. Second, most users, who lack programming skills, can directly obtain PubChem data for a large set of compounds by using the freely available Chemical In vitro-In vivo Profiling (CIIPro) portal ( http://www.ciipro.rutgers.edu ).

摘要

高通量筛选 (HTS) 技术正越来越多地被毒理学的各个领域所采用。值得注意的是,来自政府、工业界和学术界的大规模研究工作正在针对各种生物分子靶标对数以百万计的化学物质进行筛选,产生了大量可供公开使用的 HTS 测定数据。这些 HTS 测定数据为毒理学家提供了有关化学物质如何与不同生物分子靶标相互作用的重要信息,并提供了潜在毒性机制的说明。为了接受、存储和共享 HTS 数据,美国国立卫生研究院 (National Institutes of Health) 的 PubChem(http://pubchem.ncbi.nlm.nih.gov)等公开数据存储库得以建立。通过 PubChem 网站,用户可以通过使用不同的化学标识符(包括 SMILES、InChIKey、IUPAC 名称等)快速获得化合物的 PubChem 测定结果。然而,直接通过 PubChem 网络门户以适合建模和其他信息学分析的用户友好格式获取这些数据(例如,以建模友好的格式收集数百或数千种化学物质的 PubChem 数据)是不可行的。本章旨在介绍两种从 PubChem 门户获取大量化合物 HTS 测定结果的方法。首先,将描述使用 Python 编程语言通过 PubChem 的 PUG-REST 网络服务进行编程访问。其次,大多数缺乏编程技能的用户可以直接使用免费提供的 Chemical In vitro-In vivo Profiling (CIIPro) 门户(http://www.ciipro.rutgers.edu)获取大量化合物的 PubChem 数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验