Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA.
Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA.
J Hazard Mater. 2024 Jun 5;471:134297. doi: 10.1016/j.jhazmat.2024.134297. Epub 2024 Apr 12.
Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.
基于不良结局途径 (AOP) 框架开发基于机制的非动物测试方法必须结合与靶毒性相关的分子和细胞关键事件。我们使用来自体外测定和化学结构的数据,旨在创建一个混合模型来预测肝毒物。我们首先整理了 869 种化合物的参考数据集用于肝毒性建模。然后,我们针对 PubChem 对它们进行了现有体外毒性数据的分析。在 2560 个产生的测定中,我们选择了线粒体膜电位 (MMP) 测定法,这是一种高通量筛选 (HTS) 工具,可以测试化学破坏线粒体功能的物质。应用机器学习开发了定量构效关系 (QSAR) 模型,使用 2536 种化合物在 MMP 测定法中进行了测试,用于筛选新化合物。MMP 测定法的结果,包括 QSAR 模型的输出,为参考集化合物的肝毒性预测提供了正确分类比 (CCR) 为 0.59。通过包含 37 种结构警报 (CCR = 0.8),预测能力得到了提高。我们通过在人 HepG2 肝癌细胞中测试 37 种参考集化合物来验证我们的模型,并可靠地预测了它们的肝毒性 (CCR = 0.79)。这项研究介绍了一种新的 AOP 建模策略,该策略结合了公共 HTS 数据、计算建模和实验测试来预测化学肝毒性。