Suppr超能文献

基于化学结构和生物学数据的化学肝毒物机制驱动的从头预测。

Mechanism-Driven Read-Across of Chemical Hepatotoxicants Based on Chemical Structures and Biological Data.

机构信息

The Rutgers Center for Computational and Integrative Biology, Camden, New Jersey.

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.

出版信息

Toxicol Sci. 2020 Apr 1;174(2):178-188. doi: 10.1093/toxsci/kfaa005.

Abstract

Hepatotoxicity is a leading cause of attrition in the drug development process. Traditional preclinical and clinical studies to evaluate hepatotoxicity liabilities are expensive and time consuming. With the advent of critical advancements in high-throughput screening, there has been a rapid accumulation of in vitro toxicity data available to inform the risk assessment of new pharmaceuticals and chemicals. To this end, we curated and merged all available in vivo hepatotoxicity data obtained from the literature and public resources, which yielded a comprehensive database of 4089 compounds that includes hepatotoxicity classifications. After dividing the original database of chemicals into modeling and test sets, PubChem assay data were automatically extracted using an in-house data mining tool and clustered based on relationships between structural fragments and cellular responses in in vitro assays. The resultant PubChem assay clusters were further investigated. During the cross-validation procedure, the biological data obtained from several assay clusters exhibited high predictivity of hepatotoxicity and these assays were selected to evaluate the test set compounds. The read-across results indicated that if a new compound contained specific identified chemical fragments (ie, Molecular Initiating Event) and showed active responses in the relevant selected PubChem assays, there was potential for the chemical to be hepatotoxic in vivo. Furthermore, several mechanisms that might contribute to toxicity were derived from the modeling results including alterations in nuclear receptor signaling and inhibition of DNA repair. This modeling strategy can be further applied to the investigation of other complex chemical toxicity phenomena (eg, developmental and reproductive toxicities) as well as drug efficacy.

摘要

肝毒性是药物开发过程中淘汰的主要原因。传统的临床前和临床研究评估肝毒性责任是昂贵和耗时的。随着高通量筛选的出现,有大量的体外毒性数据可用于为新的药物和化学物质的风险评估提供信息。为此,我们整理并合并了从文献和公共资源中获得的所有可用的体内肝毒性数据,这些数据产生了一个包含肝毒性分类的 4089 种化合物的综合数据库。在将原始化学物质数据库分为建模和测试集之后,使用内部数据挖掘工具自动提取 PubChem 测定数据,并根据体外测定中结构片段和细胞反应之间的关系对其进行聚类。对所得的 PubChem 测定聚类进行了进一步研究。在交叉验证过程中,从几个测定聚类中获得的生物数据显示出对肝毒性的高预测性,并且选择了这些测定来评估测试集化合物。读值结果表明,如果新化合物含有特定的鉴定化学片段(即分子起始事件)并且在相关的选定 PubChem 测定中显示出活性反应,则该化合物在体内可能具有肝毒性。此外,从建模结果中得出了几种可能导致毒性的机制,包括核受体信号的改变和 DNA 修复的抑制。这种建模策略可以进一步应用于其他复杂的化学毒性现象(例如,发育和生殖毒性)以及药物疗效的研究。

相似文献

2
Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay.
J Hazard Mater. 2022 Aug 15;436:129193. doi: 10.1016/j.jhazmat.2022.129193. Epub 2022 May 20.
3
Integrating Concentration-Dependent Toxicity Data and Toxicokinetics To Inform Hepatotoxicity Response Pathways.
Environ Sci Technol. 2023 Aug 22;57(33):12291-12301. doi: 10.1021/acs.est.3c02792. Epub 2023 Aug 11.
4
Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity.
J Hazard Mater. 2024 Jun 5;471:134297. doi: 10.1016/j.jhazmat.2024.134297. Epub 2024 Apr 12.
5
Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data.
Environ Sci Technol. 2022 May 3;56(9):5984-5998. doi: 10.1021/acs.est.2c01040. Epub 2022 Apr 22.
6
Prediction of Drug-Induced Liver Injury in Micropatterned Co-cultures Containing iPSC-Derived Human Hepatocytes.
Toxicol Sci. 2015 Jun;145(2):252-62. doi: 10.1093/toxsci/kfv048. Epub 2015 Feb 24.
9
Are zebrafish larvae suitable for assessing the hepatotoxicity potential of drug candidates?
J Appl Toxicol. 2015 Sep;35(9):1017-29. doi: 10.1002/jat.3091. Epub 2015 Feb 6.
10
Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.
Arch Toxicol. 2016 Sep;90(9):2049-2061. doi: 10.1007/s00204-016-1756-1. Epub 2016 Jun 20.

引用本文的文献

1
Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms.
Environ Health (Wash). 2024 May 28;2(7):474-485. doi: 10.1021/envhealth.4c00026. eCollection 2024 Jul 19.
2
Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity.
J Hazard Mater. 2024 Jun 5;471:134297. doi: 10.1016/j.jhazmat.2024.134297. Epub 2024 Apr 12.
3
Integrating Concentration-Dependent Toxicity Data and Toxicokinetics To Inform Hepatotoxicity Response Pathways.
Environ Sci Technol. 2023 Aug 22;57(33):12291-12301. doi: 10.1021/acs.est.3c02792. Epub 2023 Aug 11.
4
Data-Driven Quantitative Structure-Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure.
Environ Sci Technol. 2023 Apr 25;57(16):6573-6588. doi: 10.1021/acs.est.3c00648. Epub 2023 Apr 11.
5
Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay.
J Hazard Mater. 2022 Aug 15;436:129193. doi: 10.1016/j.jhazmat.2022.129193. Epub 2022 May 20.
7
Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data.
Environ Sci Technol. 2022 May 3;56(9):5984-5998. doi: 10.1021/acs.est.2c01040. Epub 2022 Apr 22.
8
approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity.
Comput Toxicol. 2021 Nov;20. doi: 10.1016/j.comtox.2021.100187. Epub 2021 Sep 9.
9
Navigating the Minefield of Computational Toxicology and Informatics: Looking Back and Charting a New Horizon.
Front Toxicol. 2020 Jun 25;2:2. doi: 10.3389/ftox.2020.00002. eCollection 2020.
10
High-Throughput Screening Assay Profiling for Large Chemical Databases.
Methods Mol Biol. 2022;2474:125-132. doi: 10.1007/978-1-0716-2213-1_12.

本文引用的文献

1
Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across.
Environ Health Perspect. 2019 Apr;127(4):47001. doi: 10.1289/EHP3614.
2
Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity.
Chem Res Toxicol. 2019 Apr 15;32(4):536-547. doi: 10.1021/acs.chemrestox.8b00393. Epub 2019 Mar 25.
3
Niclosamide Induces Epiboly Delay During Early Zebrafish Embryogenesis.
Toxicol Sci. 2018 Dec 1;166(2):306-317. doi: 10.1093/toxsci/kfy214.
5
Alarms about structural alerts.
Green Chem. 2016 Aug 21;18(16):4348-4360. doi: 10.1039/C6GC01492E. Epub 2016 Jun 28.
6
CIIPro: a new read-across portal to fill data gaps using public large-scale chemical and biological data.
Bioinformatics. 2017 Feb 1;33(3):464-466. doi: 10.1093/bioinformatics/btw640.
7
Azathioprine and 6-Mercaptopurine-induced Liver Injury: Clinical Features and Outcomes.
J Clin Gastroenterol. 2017 Jan;51(1):63-69. doi: 10.1097/MCG.0000000000000568.
8
Loxoprofen: A Review in Pain and Inflammation.
Clin Drug Investig. 2016 Sep;36(9):771-781. doi: 10.1007/s40261-016-0440-9.
9
Computational Models for Human and Animal Hepatotoxicity with a Global Application Scope.
Chem Res Toxicol. 2016 May 16;29(5):757-67. doi: 10.1021/acs.chemrestox.5b00465. Epub 2016 Apr 6.
10
Toward Good Read-Across Practice (GRAP) guidance.
ALTEX. 2016;33(2):149-66. doi: 10.14573/altex.1601251. Epub 2016 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验