Suppr超能文献

相似文献

1
Base Editors for Citrus Gene Editing.
Front Genome Ed. 2022 Feb 28;4:852867. doi: 10.3389/fgeed.2022.852867. eCollection 2022.
2
Generation of transgene-free canker-resistant cv. Hamlin in the T0 generation through Cas12a/CBE co-editing.
Front Plant Sci. 2024 Mar 26;15:1385768. doi: 10.3389/fpls.2024.1385768. eCollection 2024.
3
Biallelic Editing of the Promoter via CRISPR/Cas9 Creates Canker-Resistant 'Duncan' Grapefruit.
Phytopathology. 2022 Feb;112(2):308-314. doi: 10.1094/PHYTO-04-21-0144-R. Epub 2022 Feb 3.
4
Highly Efficient Generation of Canker-Resistant Sweet Orange Enabled by an Improved CRISPR/Cas9 System.
Front Plant Sci. 2022 Jan 11;12:769907. doi: 10.3389/fpls.2021.769907. eCollection 2021.
7
Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus.
Plant Biotechnol J. 2017 Dec;15(12):1509-1519. doi: 10.1111/pbi.12733. Epub 2017 May 3.

引用本文的文献

1
Precise genome editing process and its applications in plants driven by AI.
Funct Integr Genomics. 2025 May 24;25(1):109. doi: 10.1007/s10142-025-01619-9.
3
Generation of transgene-free canker-resistant cv. Hamlin in the T0 generation through Cas12a/CBE co-editing.
Front Plant Sci. 2024 Mar 26;15:1385768. doi: 10.3389/fpls.2024.1385768. eCollection 2024.
4
CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane.
Front Plant Sci. 2024 Jan 8;14:1331258. doi: 10.3389/fpls.2023.1331258. eCollection 2023.
5
CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology.
3 Biotech. 2023 Nov;13(11):383. doi: 10.1007/s13205-023-03786-7. Epub 2023 Oct 31.
7
Transgene-free genome editing of vegetatively propagated and perennial plant species in the T0 generation via a co-editing strategy.
Nat Plants. 2023 Oct;9(10):1591-1597. doi: 10.1038/s41477-023-01520-y. Epub 2023 Sep 18.
8
Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration.
Front Genome Ed. 2023 Jul 20;5:1209586. doi: 10.3389/fgeed.2023.1209586. eCollection 2023.

本文引用的文献

1
Single-nucleotide editing for phenotypes in rice using CRISPR/Cas9-mediated adenine base editors.
aBIOTECH. 2020 Apr 6;1(2):106-118. doi: 10.1007/s42994-020-00018-x. eCollection 2020 Apr.
3
Highly Efficient Generation of Canker-Resistant Sweet Orange Enabled by an Improved CRISPR/Cas9 System.
Front Plant Sci. 2022 Jan 11;12:769907. doi: 10.3389/fpls.2021.769907. eCollection 2021.
4
PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
Plant Biotechnol J. 2022 May;20(5):934-943. doi: 10.1111/pbi.13774. Epub 2022 Jan 17.
5
Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor.
Plant Physiol. 2021 Sep 4;187(1):73-87. doi: 10.1093/plphys/kiab264.
6
Precise plant genome editing using base editors and prime editors.
Nat Plants. 2021 Sep;7(9):1166-1187. doi: 10.1038/s41477-021-00991-1. Epub 2021 Sep 13.
7
Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters.
Nat Plants. 2021 Jun;7(6):842-855. doi: 10.1038/s41477-021-00932-y. Epub 2021 Jun 3.
10
Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor.
J Integr Plant Biol. 2021 Sep;63(9):1595-1599. doi: 10.1111/jipb.13089. Epub 2021 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验