Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA.
Circulation. 2022 Apr 12;145(15):1140-1153. doi: 10.1161/CIRCULATIONAHA.121.056929. Epub 2022 Mar 17.
Ischemic heart disease remains a leading cause of death worldwide. In this study, we test the hypothesis that microRNA-210 protects the heart from myocardial ischemia-reperfusion (IR) injury by controlling mitochondrial bioenergetics and reactive oxygen species (ROS) flux.
Myocardial infarction in an acute setting of IR was examined through comparing loss- versus gain-of-function experiments in microRNA-210-deficient and wild-type mice. Cardiac function was evaluated by echocardiography. Myocardial mitochondria bioenergetics was examined using a Seahorse XF24 Analyzer.
MicroRNA-210 deficiency significantly exaggerated cardiac dysfunction up to 6 weeks after myocardial IR in male, but not female, mice. Intravenous injection of microRNA-210 mimic blocked the effect and recovered the increased myocardial IR injury and cardiac dysfunction. Analysis of mitochondrial metabolism revealed that microRNA-210 inhibited mitochondrial oxygen consumption, increased glycolytic activity, and reduced mitochondrial ROS flux in the heart during IR injury. Inhibition of mitochondrial ROS with MitoQ consistently reversed the effect of microRNA-210 deficiency. Mechanistically, we showed that mitochondrial glycerol-3-phosphate dehydrogenase is a novel target of microRNA-210 in the heart, and loss-of-function and gain-of-function experiments revealed that glycerol-3-phosphate dehydrogenase played a key role in the microRNA-210-mediated effect on mitochondrial metabolism and ROS flux in the setting of heart IR injury. Knockdown of glycerol-3-phosphate dehydrogenase negated microRNA-210 deficiency-induced increases in mitochondrial ROS production and myocardial infarction and improved left ventricular fractional shortening and ejection fraction after the IR treatment.
MicroRNA-210 targeting glycerol-3-phosphate dehydrogenase controls mitochondrial bioenergetics and ROS flux and improves cardiac function in a murine model of myocardial infarction in the setting of IR injury. The findings suggest new insights into the mechanisms and therapeutic targets for treatment of ischemic heart disease.
缺血性心脏病仍然是全球范围内的主要死亡原因。在本研究中,我们通过比较 microRNA-210 缺失和野生型小鼠的缺失和获得功能实验,检验了 microRNA-210 通过控制线粒体生物能学和活性氧(ROS)通量来保护心脏免受心肌缺血再灌注(IR)损伤的假说。
通过比较 microRNA-210 缺失和野生型小鼠的缺失和获得功能实验,研究了急性 IR 状态下的心肌梗死。通过超声心动图评估心功能。使用 Seahorse XF24 分析仪检测心肌线粒体生物能学。
microRNA-210 缺失显著加重了雄性小鼠心肌 IR 后 6 周的心脏功能障碍,但对雌性小鼠没有影响。静脉注射 microRNA-210 模拟物阻断了这种作用,并恢复了增加的心肌 IR 损伤和心脏功能障碍。线粒体代谢分析表明,microRNA-210 在 IR 损伤期间抑制了线粒体耗氧量、增加了糖酵解活性,并减少了心脏中的线粒体 ROS 通量。用 MitoQ 抑制线粒体 ROS 一致逆转了 microRNA-210 缺失的作用。在机制上,我们表明,线粒体甘油-3-磷酸脱氢酶是心脏中 microRNA-210 的一种新靶点,并且失活和激活实验表明,甘油-3-磷酸脱氢酶在 microRNA-210 介导的心脏 IR 损伤中线粒体代谢和 ROS 通量中的作用中发挥了关键作用。甘油-3-磷酸脱氢酶的敲低否定了 microRNA-210 缺失诱导的线粒体 ROS 产生增加、心肌梗死,并改善了 IR 治疗后的左心室缩短分数和射血分数。
microRNA-210 靶向甘油-3-磷酸脱氢酶控制线粒体生物能学和 ROS 通量,并改善了 IR 损伤小鼠模型中的心肌梗死心脏功能。这些发现为缺血性心脏病的治疗机制和治疗靶点提供了新的见解。