Suppr超能文献

THINGS 数据库中图像的亮度和对比度。

Luminance and Contrast of Images in the THINGS Database.

机构信息

Queensland Brain Institute and School of Psychology, 1974The University of Queensland.

出版信息

Perception. 2022 Apr;51(4):244-262. doi: 10.1177/03010066221083397. Epub 2022 Mar 16.

Abstract

The THINGS database is a freely available stimulus set that has the potential to facilitate the generation of theory that bridges multiple areas within cognitive neuroscience. The database consists of 26,107 high quality digital photos that are sorted into 1,854 concepts. While a valuable resource, relatively few technical details relevant to the design of studies in cognitive neuroscience have been described. We present an analysis of two key low-level properties of THINGS images, luminance and luminance contrast. These image statistics are known to influence common physiological and neural correlates of perceptual and cognitive processes. In general, we found that the distributions of luminance and contrast are in close agreement with the statistics of natural images reported previously. However, we found that image concepts are separable in their luminance and contrast: we show that luminance and contrast alone are sufficient to classify images into their concepts with above chance accuracy. We describe how these factors may confound studies using the THINGS images, and suggest simple controls that can be implemented a priori or post-hoc. We discuss the importance of using such natural images as stimuli in psychological research.

摘要

THING 数据库是一个免费的刺激库,具有促进跨认知神经科学多个领域的理论生成的潜力。该数据库由 26107 张高质量的数字照片组成,这些照片被分为 1854 个概念。虽然这是一个有价值的资源,但与认知神经科学研究设计相关的相对较少的技术细节已经被描述。我们分析了 THINGS 图像的两个关键的低水平属性,即亮度和亮度对比度。这些图像统计数据已知会影响感知和认知过程的常见生理和神经相关物。总的来说,我们发现亮度和对比度的分布与先前报道的自然图像的统计数据非常吻合。然而,我们发现图像概念在亮度和对比度上是可分离的:我们表明,仅亮度和对比度就足以以高于机会的准确性将图像分类到其概念中。我们描述了这些因素如何混淆使用 THINGS 图像的研究,并建议可以在事前或事后实施的简单控制。我们讨论了在心理研究中使用此类自然图像作为刺激的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验