Barnard College, Columbia University, New York, NY, USA.
Bates College, Lewiston, ME, USA.
J Vis. 2024 Oct 3;24(11):6. doi: 10.1167/jov.24.11.6.
We introduce the Visual Experience Dataset (VEDB), a compilation of more than 240 hours of egocentric video combined with gaze- and head-tracking data that offer an unprecedented view of the visual world as experienced by human observers. The dataset consists of 717 sessions, recorded by 56 observers ranging from 7 to 46 years of age. This article outlines the data collection, processing, and labeling protocols undertaken to ensure a representative sample and discusses the potential sources of error or bias within the dataset. The VEDB's potential applications are vast, including improving gaze-tracking methodologies, assessing spatiotemporal image statistics, and refining deep neural networks for scene and activity recognition. The VEDB is accessible through established open science platforms and is intended to be a living dataset with plans for expansion and community contributions. It is released with an emphasis on ethical considerations, such as participant privacy and the mitigation of potential biases. By providing a dataset grounded in real-world experiences and accompanied by extensive metadata and supporting code, the authors invite the research community to use and contribute to the VEDB, facilitating a richer understanding of visual perception and behavior in naturalistic settings.
我们介绍了视觉体验数据集 (VEDB),这是一个由超过 240 小时的自我中心视频和注视及头部跟踪数据组成的数据集,为人类观察者体验的视觉世界提供了前所未有的视角。该数据集由 717 个会话组成,由 56 名年龄在 7 岁至 46 岁之间的观察者记录。本文概述了为确保代表性样本而进行的数据收集、处理和标记协议,并讨论了数据集中可能存在的误差或偏差的潜在来源。VEDB 的潜在应用非常广泛,包括改进注视跟踪方法、评估时空图像统计数据以及改进用于场景和活动识别的深度神经网络。VEDB 可通过成熟的开放科学平台获取,并且计划进行扩展和社区贡献。它的发布强调了伦理考虑因素,例如参与者隐私和潜在偏差的缓解。通过提供一个基于真实体验的数据集,并附有大量元数据和支持代码,作者邀请研究界使用和为 VEDB 做出贡献,从而促进对自然环境中视觉感知和行为的更深入理解。