BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile.
Laboratorio de Análisis de Sólidos, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago, Chile.
Biol Res. 2022 Mar 16;55(1):12. doi: 10.1186/s40659-022-00382-6.
The Atacama salt flat is located in northern Chile, at 2300 m above sea level, and has a high concentration of lithium, being one of the main extraction sites in the world. The effect of lithium on microorganism communities inhabiting environments with high concentrations of this metal has been scarcely studied. A few works have studied the microorganisms present in lithium-rich salt flats (Uyuni and Hombre Muerto in Bolivia and Argentina, respectively). Nanocrystals formation through biological mineralization has been described as an alternative for microorganisms living in metal-rich environments to cope with metal ions. However, bacterial lithium biomineralization of lithium nanostructures has not been published to date. In the present work, we studied lithium-rich soils of the Atacama salt flat and reported for the first time the biological synthesis of Li nanoparticles.
Bacterial communities were evaluated and a high abundance of Cellulomonas, Arcticibacter, Mucilaginibacter, and Pseudomonas were determined. Three lithium resistant strains corresponding to Pseudomonas rodhesiae, Planomicrobium koreense, and Pseudomonas sp. were isolated (MIC > 700 mM). High levels of S were detected in the headspace of P. rodhesiae and Pseudomonas sp. cultures exposed to cysteine. Accordingly, biomineralization of lithium sulfide-containing nanomaterials was determined in P. rodhesiae exposed to lithium salts and cysteine. Transmission electron microscopy (TEM) analysis of ultrathin sections of P. rodhesiae cells biomineralizing lithium revealed the presence of nanometric materials. Lithium sulfide-containing nanomaterials were purified, and their size and shape determined by dynamic light scattering and TEM. Spherical nanoparticles with an average size < 40 nm and a hydrodynamic size ~ 44.62 nm were determined.
We characterized the bacterial communities inhabiting Li-rich extreme environments and reported for the first time the biomineralization of Li-containing nanomaterials by Li-resistant bacteria. The biosynthesis method described in this report could be used to recover lithium from waste batteries and thus provide a solution to the accumulation of batteries.
阿塔卡马盐沼位于智利北部,海拔 2300 米,锂浓度很高,是世界上主要的锂提取地之一。锂对栖息在高浓度金属环境中的微生物群落的影响很少被研究。一些研究已经研究了富含锂的盐滩中存在的微生物(Uyuni 和 Hombre Muerto,分别位于玻利维亚和阿根廷)。通过生物矿化形成纳米晶体已被描述为生活在富含金属环境中的微生物应对金属离子的一种替代方法。然而,到目前为止,还没有关于细菌对锂纳米结构的生物矿化的报道。在本工作中,我们研究了阿塔卡马盐沼的富锂土壤,并首次报道了 Li 纳米颗粒的生物合成。
评估了细菌群落,确定了 Cellulomonas、Arcticibacter、Mucilaginibacter 和 Pseudomonas 的高丰度。分离出三株耐锂菌株,分别对应于 Rodhesiae 假单胞菌、Koreense Planomicrobium 和 Pseudomonas sp.(MIC > 700 mM)。在暴露于半胱氨酸的 Rhodhesiae 假单胞菌和 Pseudomonas sp. 培养物的顶空检测到高浓度的 S。因此,在暴露于锂盐和半胱氨酸的 Rhodhesiae 假单胞菌中确定了含 Li 硫化物的纳米材料的生物矿化。用透射电子显微镜(TEM)对生物矿化锂的 Rhodhesiae 细胞超薄切片进行分析,发现存在纳米级材料。纯化了含 Li 硫化物的纳米材料,并通过动态光散射和 TEM 确定了它们的尺寸和形状。确定了平均尺寸<40nm 和水动力尺寸~44.62nm 的球形纳米颗粒。
我们描述了栖息在富含 Li 的极端环境中的细菌群落,并首次报道了耐 Li 细菌对含 Li 纳米材料的生物矿化。本报告中描述的生物合成方法可用于从废电池中回收锂,从而为电池的积累提供解决方案。