Arriaza-Echanes Carolina, Campo-Giraldo Jessica L, Valenzuela-Ibaceta Felipe, Ramos-Zúñiga Javiera, Pérez-Donoso José M
BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República #330, Santiago 8320000, Chile.
Doctorado en Ciencias de Materiales Avanzados, Vicerrectoría de Investigación, Universidad Mayor, Santiago 8580745, Chile.
Nanomaterials (Basel). 2024 Mar 21;14(6):552. doi: 10.3390/nano14060552.
In recent years, the utilization of extremophile microorganisms for the synthesis of metal nanoparticles, featuring enhanced properties and diverse compositions, has emerged as a sustainable strategy to generate high-quality nanomaterials with unique characteristics. Our study focuses on the biosynthesis of Cu-In-S (CIS) nanoparticles, which has garnered considerable attention in the past decade due to their low toxicity and versatile applications in biomedicine and solar cells. Despite this interest, there is a notable absence of reports on biological methods for CIS nanoparticle synthesis. In this research, three yeast species were isolated from soil samples in an extreme Antarctic environment-Union Glacier, Ellsworth Mountains. Among these isolates, demonstrated the capability to biosynthesize CIS nanoparticles when exposed to copper sulfate, indium chloride, glutathione, and cysteine. Subsequent purification and spectroscopic characterization confirmed the presence of characteristic absorbance and fluorescence peaks for CIS nanoparticles at 500 and 650 nm, respectively. Transmission electron microscopy analysis revealed the synthesis of monodisperse nanoparticles with a size range of 3-5 nm. Energy dispersive X-ray spectroscopy confirmed the composition of the nanoparticles, revealing the presence of copper, indium, and sulfur. The copper/indium ratio ranged from 0.15 to 0.27, depending on the reaction time. The biosynthesized CIS nanoparticles showed higher photostability than biomimetic nanoparticles and demonstrated successful application as photosensitizers in quantum dot-sensitized solar cells (QDSSC), achieving a conversion efficiency of up to 0.0247%. In summary, this work presents a cost-effective, straightforward, and environmentally friendly method for CIS nanoparticle synthesis. Furthermore, it constitutes the first documented instance of a biological procedure for producing these nanoparticles, opening avenues for the development of environmentally sustainable solar cells.
近年来,利用极端微生物合成具有增强性能和多样组成的金属纳米颗粒,已成为一种可持续的策略,用于生成具有独特特性的高质量纳米材料。我们的研究聚焦于Cu-In-S(CIS)纳米颗粒的生物合成,在过去十年中,由于其低毒性以及在生物医学和太阳能电池中的广泛应用,CIS纳米颗粒已备受关注。尽管如此,关于CIS纳米颗粒合成的生物学方法的报道却明显匮乏。在本研究中,从南极极端环境——埃尔斯沃思山脉联合冰川的土壤样本中分离出三种酵母菌株。在这些分离菌株中,当暴露于硫酸铜、氯化铟、谷胱甘肽和半胱氨酸时,[具体菌株名称缺失]表现出生物合成CIS纳米颗粒的能力。随后的纯化和光谱表征证实,在500和650 nm处分别存在CIS纳米颗粒的特征吸收峰和荧光峰。透射电子显微镜分析显示合成出了尺寸范围为3 - 5 nm的单分散纳米颗粒。能量色散X射线光谱证实了纳米颗粒的组成,显示出铜、铟和硫的存在。铜/铟比率在0.15至0.27之间,具体取决于反应时间。生物合成的CIS纳米颗粒比仿生纳米颗粒表现出更高的光稳定性,并在量子点敏化太阳能电池(QDSSC)中作为光敏剂成功应用,实现了高达0.0247%的转换效率。总之,这项工作提出了一种经济高效、简便且环保的CIS纳米颗粒合成方法。此外,它构成了生产这些纳米颗粒的生物学方法的首个文献记载实例,为环境可持续太阳能电池的发展开辟了道路。