Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong.
Clinical Genetic Service, Department of Health, Kowloon Bay, Hong Kong.
Sci Rep. 2022 Mar 16;12(1):4519. doi: 10.1038/s41598-022-08576-4.
Structural variation (SV) is a major cause of genetic disorders. In this paper, we show that low-depth (specifically, 4×) whole-genome sequencing using a single Oxford Nanopore MinION flow cell suffices to support sensitive detection of SV, particularly pathogenic SV for supporting clinical diagnosis. When using 4× ONT WGS data, existing SV calling software often fails to detect pathogenic SV, especially in the form of long deletion, terminal deletion, duplication, and unbalanced translocation. Our new SV calling software SENSV can achieve high sensitivity for all types of SV and a breakpoint precision typically ± 100 bp; both features are important for clinical concerns. The improvement achieved by SENSV stems from several new algorithms. We evaluated SENSV and other software using both real and simulated data. The former was based on 24 patient samples, each diagnosed with a genetic disorder. SENSV found the pathogenic SV in 22 out of 24 cases (all heterozygous, size from hundreds of kbp to a few Mbp), reporting breakpoints within 100 bp of the true answers. On the other hand, no existing software can detect the pathogenic SV in more than 10 out of 24 cases, even when the breakpoint requirement is relaxed to ± 2000 bp.
结构变异(SV)是遗传疾病的主要原因。在本文中,我们表明,使用单个 Oxford Nanopore MinION 流动池进行低深度(具体为 4×)全基因组测序足以支持 SV 的敏感检测,特别是支持临床诊断的致病性 SV。当使用 4×ONT WGS 数据时,现有的 SV 调用软件通常无法检测致病性 SV,尤其是长缺失、末端缺失、重复和不平衡易位的形式。我们的新 SV 调用软件 SENSV 可以实现所有类型 SV 的高灵敏度和通常为 ±100bp 的断点精度;这两个特征对于临床关注都很重要。SENSV 的改进源于几种新算法。我们使用真实和模拟数据评估了 SENSV 和其他软件。前者基于 24 个被诊断患有遗传疾病的患者样本。SENSV 在 24 个病例中的 22 个(均为杂合子,大小从几百 kbp 到几个 Mbp)中发现了致病性 SV,并报告了与真实答案相差 100bp 以内的断点。另一方面,即使放宽到 ±2000bp 的断点要求,也没有现有的软件可以在超过 24 个病例中的 10 个以上检测到致病性 SV。