Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.
Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States.
J Am Chem Soc. 2022 Mar 30;144(12):5280-5283. doi: 10.1021/jacs.2c02288. Epub 2022 Mar 17.
Here we report a computation-driven chemoenzymatic synthesis and biosynthesis of the natural product deoxyakanthomycin, an atropisomeric pyridone natural product that features a 7-membered carbocycle with five stereocenters, one of which a quaternary center. The one-step synthesis from a biosynthetic precursor is based on computational analysis that predicted a σ-bridged cation mediated cyclization mechanism to form deoxyakanthomycin. The σ-bridged cation rationalizes the observed substrate-controlled selectivity; diastereoselectivity arises from attack of water to the σ-bridging, as is generally found for σ-bridged cations. Our studies also reveal a unifying biosynthetic strategy for 2-pyridone natural products that derive from a common -quinone methide to create diverse structures.
在这里,我们报告了一种计算驱动的化学酶合成和天然产物去氧放线菌素的生物合成,去氧放线菌素是一种具有七个立体中心的非对映异构吡啶酮天然产物,其中一个是季碳原子。从生物合成前体的一步合成基于计算分析,预测了一个σ桥正离子介导的环化机制来形成去氧放线菌素。σ桥正离子解释了观察到的底物控制的选择性;非对映选择性源于水对σ桥的进攻,这在一般的σ桥正离子中是常见的。我们的研究还揭示了一种统一的生物合成策略,用于 2-吡啶酮天然产物,它们来源于共同的 -醌亚甲基,以创建不同的结构。