Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States.
J Am Chem Soc. 2022 Mar 30;144(12):5241-5246. doi: 10.1021/jacs.2c00384. Epub 2022 Mar 17.
Herein we report that dimensional reduction from three-dimensional nanoscale metal-organic frameworks (nMOFs) to two-dimensional nanoscale metal-organic layers (nMOLs) increases the frequency of encounters between photosensitizers and oxygen and facilitates the diffusion of singlet oxygen from the nMOL to significantly enhance photodynamic therapy. The nMOFs and nMOLs share the same M-oxo (M = Zr, Hf) secondary building units and 5,15-di--benzoatoporphyrin (DBP) ligands but exhibit three-dimensional and two-dimensional topologies, respectively. Molecular dynamics simulations and experimental studies revealed that the nMOLs with a monolayer morphology enhanced the generation of reactive oxygen species and exhibited over an order of magnitude higher cytotoxicity over the nMOFs. In a mouse model of triple-negative breast cancer, Hf-DBP nMOL showed 49.1% more tumor inhibition, an 80% higher cure rate, and 16.3-fold lower metastasis potential than Hf-DBP nMOF.
在此,我们报告了从三维纳米尺度金属有机骨架(nMOFs)到二维纳米尺度金属有机层(nMOLs)的维度降低,增加了光敏剂与氧气的相遇频率,并促进了单线态氧从 nMOL 中的扩散,从而显著增强了光动力疗法。nMOFs 和 nMOLs 具有相同的 M-氧(M = Zr,Hf)次级构筑单元和 5,15-二--苯并卟啉(DBP)配体,但分别具有三维和二维拓扑结构。分子动力学模拟和实验研究表明,具有单层形态的 nMOLs 增强了活性氧的生成,并表现出比 nMOFs 高出一个数量级的细胞毒性。在三阴性乳腺癌的小鼠模型中,Hf-DBP nMOL 显示出 49.1%的肿瘤抑制率、80%的治愈率和 16.3 倍的低转移潜力,优于 Hf-DBP nMOF。