Départment de Physique, Université de Montréal, Case postale 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
Université de Paris, INSERM U1133, CNRS UMR 8251, F-75205 Paris, France.
J Chem Theory Comput. 2022 Apr 12;18(4):2720-2736. doi: 10.1021/acs.jctc.1c01293. Epub 2022 Mar 17.
Fast and accurate structure prediction is essential to the study of peptide function, molecular targets, and interactions and has been the subject of considerable efforts in the past decade. In this work, we present improvements to the popular simplified PEP-FOLD technique for small peptide structure prediction. PEP-FOLD originality is threefold: (i) it uses a predetermined structural alphabet, (ii) it uses a sequential algorithm to reconstruct the tridimensional structures of these peptides in a discrete space using a fragment library, and (iii) it assesses the energy of these structures using a coarse-grained representation in which all of the backbone atoms but the α-hydrogen are present, and the side chain corresponds to a unique bead. In former versions of PEP-FOLD, a van der Waals formulation was used for non-bonded interactions, with each side chain being associated with a fixed radius. Here, we explore the relevance of using instead a generalized formulation in which not only the optimal distance of interaction and the energy at this distance are parameters but also the distance at which the potential is zero. This allows each side chain to be associated with a different radius and potential energy shape, depending on its interaction partner, and in principle to make more effective the coarse-grained representation. In addition, the new PEP-FOLD version is associated with an updated library of fragments. We show that these modifications lead to important improvements for many of the problematic targets identified with the former PEP-FOLD version while maintaining already correct predictions. The improvement is in terms of both model ranking and model accuracy. We also compare the PEP-FOLD enhanced version to state-of-the-art techniques for both peptide and structure predictions: APPTest, RaptorX, and AlphaFold2. We find that the new predictions are superior, in particular with respect to the prediction of small β-targets, to those of APPTest and RaptorX and bring, with its original approach, additional understanding on folded structures, even when less precise than AlphaFold2. With their strong physical influence, the revised structural library and coarse-grained potential offer, however, the means for a deeper understanding of the nature of folding and open a solid basis for studying flexibility and other dynamical properties not accessible to IA structure prediction approaches.
快速准确的结构预测对于研究肽的功能、分子靶标和相互作用至关重要,过去十年一直是相当多努力的主题。在这项工作中,我们对流行的简化 PEP-FOLD 技术进行了改进,用于小肽结构预测。PEP-FOLD 的原创性有三点:(i)它使用预定的结构字母表,(ii)它使用顺序算法在离散空间中使用片段库重建这些肽的三维结构,(iii)它使用粗粒度表示来评估这些结构的能量,其中所有的骨架原子,但α-氢,而侧链对应于一个独特的珠子。在 PEP-FOLD 的前几个版本中,使用范德华公式来表示非键相互作用,每个侧链都与一个固定的半径相关联。在这里,我们探索了使用广义公式的相关性,其中不仅相互作用的最佳距离和该距离处的能量是参数,而且势能为零的距离也是参数。这允许每个侧链根据其相互作用伙伴具有不同的半径和势能形状,并且原则上可以使粗粒度表示更加有效。此外,新版本的 PEP-FOLD 与更新的片段库相关联。我们表明,这些修改对于以前的 PEP-FOLD 版本识别的许多有问题的目标都有重要的改进,同时保持了已经正确的预测。改进体现在模型排名和模型准确性方面。我们还将增强版的 PEP-FOLD 与肽和结构预测的最先进技术 APPTest、RaptorX 和 AlphaFold2 进行了比较。我们发现,新的预测在某些方面优于 APPTest 和 RaptorX 的预测,特别是在小β-目标的预测方面,并且由于其独特的方法,即使不如 AlphaFold2 精确,也可以对折叠结构有更深入的理解。然而,修订后的结构库和粗粒度势能具有强烈的物理影响,为折叠的本质提供了更深入的理解,并为研究灵活性和其他不可访问的 IA 结构预测方法的动态特性奠定了坚实的基础。