Suppr超能文献

一种用于预测水溶液中肽结构的精细pH依赖粗粒度模型。

A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution.

作者信息

Tufféry Pierre, Derreumaux Philippe

机构信息

Université Paris Cité, CNRS UMR 8251, INSERM U1133, Paris, France.

Université Paris Cité, CNRS UPR9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France.

出版信息

Front Bioinform. 2023 Jan 16;3:1113928. doi: 10.3389/fbinf.2023.1113928. eCollection 2023.

Abstract

Peptides carry out diverse biological functions and the knowledge of the conformational ensemble of polypeptides in various experimental conditions is important for biological applications. All fast dedicated softwares perform well in aqueous solution at neutral pH. In this study, we go one step beyond by combining the Debye-Hückel formalism for charged-charged amino acid interactions and a coarse-grained potential of the amino acids to treat pH and salt variations. Using the PEP-FOLD framework, we show that our approach performs as well as the machine-leaning AlphaFold2 and TrRosetta methods for 15 well-structured sequences, but shows significant improvement in structure prediction of six poly-charged amino acids and two sequences that have no homologous in the Protein Data Bank, expanding the range of possibilities for the understanding of peptide biological roles and the design of candidate therapeutic peptides.

摘要

肽具有多种生物学功能,了解多肽在各种实验条件下的构象集合对于生物学应用很重要。所有快速专用软件在中性pH的水溶液中表现良好。在本研究中,我们更进一步,将用于带电氨基酸相互作用的德拜-休克尔形式理论与氨基酸的粗粒度势相结合,以处理pH值和盐浓度的变化。使用PEP-FOLD框架,我们表明,对于15个结构良好的序列,我们的方法与机器学习的AlphaFold2和TrRosetta方法表现相当,但在预测六个多电荷氨基酸和两个在蛋白质数据库中没有同源序列的结构时,显示出显著改进,扩大了理解肽生物学作用和设计候选治疗性肽的可能性范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d6b/9885153/cd2f03240f42/fbinf-03-1113928-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验