Suppr超能文献

LAG-1:一种动态的、综合的学习、注意力和注视模型。

LAG-1: A dynamic, integrative model of learning, attention, and gaze.

机构信息

Department of Psychology, Simon Fraser University, Burnaby, BC, Canada.

Center for Perceptual Systems, University of Texas, Austin, Texas, United States of America.

出版信息

PLoS One. 2022 Mar 17;17(3):e0259511. doi: 10.1371/journal.pone.0259511. eCollection 2022.

Abstract

It is clear that learning and attention interact, but it is an ongoing challenge to integrate their psychological and neurophysiological descriptions. Here we introduce LAG-1, a dynamic neural field model of learning, attention and gaze, that we fit to human learning and eye-movement data from two category learning experiments. LAG-1 comprises three control systems: one for visuospatial attention, one for saccadic timing and control, and one for category learning. The model is able to extract a kind of information gain from pairwise differences in simple associations between visual features and categories. Providing this gain as a reentrant signal with bottom-up visual information, and in top-down spatial priority, appropriately influences the initiation of saccades. LAG-1 provides a moment-by-moment simulation of the interactions of learning and gaze, and thus simultaneously produces phenomena on many timescales, from the duration of saccades and gaze fixations, to the response times for trials, to the slow optimization of attention toward task relevant information across a whole experiment. With only three free parameters (learning rate, trial impatience, and fixation impatience) LAG-1 produces qualitatively correct fits for learning, behavioural timing and eye movement measures, and also for previously unmodelled empirical phenomena (e.g., fixation orders showing stimulus-specific attention, and decreasing fixation counts during feedback). Because LAG-1 is built to capture attention and gaze generally, we demonstrate how it can be applied to other phenomena of visual cognition such as the free viewing of visual stimuli, visual search, and covert attention.

摘要

很明显,学习和注意力是相互作用的,但将它们的心理和神经生理描述整合在一起仍然是一个持续的挑战。在这里,我们引入了 LAG-1,这是一种学习、注意力和注视的动态神经场模型,我们将其拟合到来自两个类别学习实验的人类学习和眼动数据中。LAG-1 由三个控制系统组成:一个用于视空间注意,一个用于扫视计时和控制,一个用于类别学习。该模型能够从视觉特征和类别之间的简单关联的成对差异中提取出一种信息增益。将这种增益作为一种带有自上而下空间优先级的底朝天视觉信息的返馈信号提供,适当地影响了扫视的启动。LAG-1 提供了学习和注视相互作用的实时模拟,从而同时产生了许多时间尺度上的现象,从扫视和注视持续时间,到试验的反应时间,再到整个实验中注意力对任务相关信息的缓慢优化。LAG-1 只使用三个自由参数(学习率、试验不耐烦和固定不耐烦),就可以对学习、行为定时和眼动测量进行定性正确的拟合,还可以对以前未建模的经验现象进行拟合(例如,固定顺序显示刺激特异性注意,以及在反馈过程中固定计数减少)。由于 LAG-1 是为捕捉注意力和注视而构建的,我们展示了它如何应用于其他视觉认知现象,如视觉刺激的自由观看、视觉搜索和隐蔽注意力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b376/8929614/8c947f66951f/pone.0259511.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验