Suppr超能文献

儿科内分泌学参考曲线:利用生物标志物 Z 分数进行临床分类。

Reference Curves for Pediatric Endocrinology: Leveraging Biomarker Z-Scores for Clinical Classifications.

机构信息

Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.

Faculty of Health, VID Specialized University, Bergen, Norway.

出版信息

J Clin Endocrinol Metab. 2022 Jun 16;107(7):2004-2015. doi: 10.1210/clinem/dgac155.

Abstract

CONTEXT

Hormone reference intervals in pediatric endocrinology are traditionally partitioned by age and lack the framework for benchmarking individual blood test results as normalized z-scores and plotting sequential measurements onto a chart. Reference curve modeling is applicable to endocrine variables and represents a standardized method to account for variation with gender and age.

OBJECTIVE

We aimed to establish gender-specific biomarker reference curves for clinical use and benchmark associations between hormones, pubertal phenotype, and body mass index (BMI).

METHODS

Using cross-sectional population sample data from 2139 healthy Norwegian children and adolescents, we analyzed the pubertal status, ultrasound measures of glandular breast tissue (girls) and testicular volume (boys), BMI, and laboratory measurements of 17 clinical biomarkers modeled using the established "LMS" growth chart algorithm in R.

RESULTS

Reference curves for puberty hormones and pertinent biomarkers were modeled to adjust for age and gender. Z-score equivalents of biomarker levels and anthropometric measurements were compiled in a comprehensive beta coefficient matrix for each gender. Excerpted from this analysis and independently of age, BMI was positively associated with female glandular breast volume (β = 0.5, P < 0.001) and leptin (β = 0.6, P < 0.001), and inversely correlated with serum levels of sex hormone-binding globulin (SHBG) (β = -0.4, P < 0.001). Biomarker z-score profiles differed significantly between cohort subgroups stratified by puberty phenotype and BMI weight class.

CONCLUSION

Biomarker reference curves and corresponding z-scores provide an intuitive framework for clinical implementation in pediatric endocrinology and facilitate the application of machine learning classification and covariate precision medicine for pediatric patients.

摘要

背景

儿科内分泌学中的激素参考区间传统上按年龄划分,缺乏将个体血液检测结果标准化为 z 分数并绘制连续测量值到图表上的基准框架。参考曲线建模适用于内分泌变量,代表了一种标准化方法,可以解释性别和年龄的变化。

目的

我们旨在为临床应用建立性别特异性生物标志物参考曲线,并基准激素、青春期表型和体重指数 (BMI) 之间的关联。

方法

使用来自 2139 名健康挪威儿童和青少年的横断面人群样本数据,我们分析了青春期状态、乳房组织(女孩)和睾丸体积(男孩)的超声测量、BMI 以及使用既定的“LMS”生长图表算法在 R 中建模的 17 种临床生物标志物的实验室测量值。

结果

为了调整年龄和性别,对青春期激素和相关生物标志物的参考曲线进行了建模。为每个性别编制了生物标志物水平和人体测量值的 Z 分数等价物的综合β系数矩阵。从这个分析中摘录出来,并独立于年龄,BMI 与女性乳腺腺体体积呈正相关(β=0.5,P<0.001)和瘦素(β=0.6,P<0.001),与血清性激素结合球蛋白(SHBG)水平呈负相关(β=-0.4,P<0.001)。根据青春期表型和 BMI 体重类别分层的队列亚组,生物标志物 z 分数谱差异显著。

结论

生物标志物参考曲线和相应的 z 分数为儿科内分泌学的临床实施提供了直观的框架,并促进了机器学习分类和协变量精准医学在儿科患者中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3871/9202734/bb84503d5620/dgac155f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验