Suppr超能文献

一种机器学习模型,可模拟专家在万古霉素初始剂量规划中的决策制定。

A machine learning model that emulates experts' decision making in vancomycin initial dose planning.

机构信息

Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan.

Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan.

出版信息

J Pharmacol Sci. 2022 Apr;148(4):358-363. doi: 10.1016/j.jphs.2022.02.005. Epub 2022 Feb 20.

Abstract

Vancomycin is a glycopeptide antibiotic that is a primary treatment for methicillin-resistant Staphylococcus aureus infections. To enhance its clinical effectiveness and prevent nephrotoxicity, therapeutic drug monitoring (TDM) of trough concentrations is recommended. Initial vancomycin dosing regimens are determined based on patient characteristics such as age, body weight, and renal function, and dosing strategies to achieve therapeutic concentration windows at initial TDM have been extensively studied. Although numerous dosing nomograms for specific populations have been developed, no comprehensive strategy exists for individually tailoring initial dosing regimens; therefore, decision making regarding initial dosing largely depends on each clinician's experience and expertise. In this study, we applied a machine-learning (ML) approach to integrate clinician knowledge into a predictive model for initial vancomycin dosing. A dataset of vancomycin initial dose plans defined by pharmacists experienced in vancomycin TDM (i.e., experts) was used to build the ML model. Although small training sets were used, we established a predictive model with a target attainment rate comparable to those of experts, another ML model, and commonly used vancomycin dosing software. Our strategy will help develop an expert-like predictive model that aids in decision making for initial vancomycin dosing, particularly in settings where dose planning consultations are unavailable.

摘要

万古霉素是一种糖肽类抗生素,是治疗耐甲氧西林金黄色葡萄球菌感染的主要药物。为了提高其临床疗效并预防肾毒性,建议进行谷浓度治疗药物监测(TDM)。初始万古霉素给药方案根据患者的年龄、体重和肾功能等特征确定,并且已经广泛研究了初始 TDM 时达到治疗浓度范围的给药策略。尽管已经为特定人群制定了许多剂量图表,但没有针对个体化初始给药方案的综合策略;因此,初始给药的决策在很大程度上取决于每个临床医生的经验和专业知识。在这项研究中,我们应用机器学习(ML)方法将临床医生的知识整合到初始万古霉素给药的预测模型中。该 ML 模型使用了由在万古霉素 TDM 方面经验丰富的药剂师(即专家)定义的万古霉素初始剂量计划数据集进行构建。尽管使用了较小的训练集,但我们建立的预测模型的目标达成率与专家、另一个 ML 模型和常用的万古霉素给药软件相当。我们的策略将有助于开发出类似专家的预测模型,为初始万古霉素给药的决策提供帮助,特别是在无法进行剂量规划咨询的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验