Suppr超能文献

优化儿科万古霉素剂量:一种预测 4 岁以下儿童谷浓度的机器学习方法。

Optimizing vancomycin dosing in pediatrics: a machine learning approach to predict trough concentrations in children under four years of age.

机构信息

School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200127, China.

Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

出版信息

Int J Clin Pharm. 2024 Oct;46(5):1134-1142. doi: 10.1007/s11096-024-01745-7. Epub 2024 Jun 11.

Abstract

BACKGROUND

Vancomycin trough concentration is closely associated with clinical efficacy and toxicity. Predicting vancomycin trough concentrations in pediatric patients is challenging due to significant inter-individual variability and rapid physiological changes during maturation.

AIM

This study aimed to develop a machine learning model to predict vancomycin trough concentrations and determine optimal dosing regimens for pediatric patients < 4 years of age using ML algorithms.

METHOD

A single-center retrospective observational study was conducted from January 2017 to March 2020. Pediatric patients who received intravenous vancomycin and underwent therapeutic drug monitoring were enrolled. Seven ML models [linear regression, gradient boosted decision trees, support vector machine, decision tree, random forest, Bagging, and extreme gradient boosting (XGBoost)] were developed using 31 variables. Performance metrics including R-squared (R), mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) were compared, and important features were ranked.

RESULTS

The study included 120 eligible trough concentration measurements from 112 patients. Of these, 84 measurements were used for training and 36 for testing. Among the seven algorithms tested, XGBoost showed the best performance, with a low prediction error and high goodness of fit (MAE = 2.55, RMSE = 4.13, MSE = 17.12, and R = 0.59). Blood urea nitrogen, serum creatinine, and creatinine clearance rate were identified as the most important predictors of vancomycin trough concentration.

CONCLUSION

An XGBoost ML model was developed to predict vancomycin trough concentrations and aid in drug treatment predictions as a decision-support technology.

摘要

背景

万古霉素谷浓度与临床疗效和毒性密切相关。由于个体间差异大,以及成熟过程中生理变化迅速,预测儿科患者的万古霉素谷浓度具有挑战性。

目的

本研究旨在使用机器学习 (ML) 算法建立一个预测万古霉素谷浓度的模型,并确定<4 岁儿科患者的最佳给药方案。

方法

进行了一项单中心回顾性观察研究,时间为 2017 年 1 月至 2020 年 3 月。纳入接受静脉万古霉素和治疗药物监测的儿科患者。使用 31 个变量开发了 7 个 ML 模型[线性回归、梯度提升决策树、支持向量机、决策树、随机森林、袋装和极端梯度提升(XGBoost)]。比较了包括 R 平方 (R)、均方误差 (MSE)、均方根误差 (RMSE) 和平均绝对误差 (MAE) 在内的性能指标,并对重要特征进行了排序。

结果

该研究纳入了 112 例患者的 120 个谷浓度测量值。其中,84 个测量值用于训练,36 个用于测试。在测试的七种算法中,XGBoost 表现最佳,预测误差低,拟合度高(MAE=2.55、RMSE=4.13、MSE=17.12、R=0.59)。血尿素氮、血清肌酐和肌酐清除率被确定为万古霉素谷浓度的最重要预测因子。

结论

开发了 XGBoost ML 模型来预测万古霉素谷浓度,并作为决策支持技术辅助药物治疗预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验