Priyanka Uddandarao, Lens Piet N L
National University of Ireland, University Road, Galway, Ireland.
Chemosphere. 2022 Jul;298:134162. doi: 10.1016/j.chemosphere.2022.134162. Epub 2022 Mar 14.
Inorganic-microbial hybrid systems have potential to be sustainable, efficient and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with microbial cells. Here, we demonstrate light-driven photocatalytic semiconducting Aspergillus niger cells-ZnS nanoparticles for enhanced removal of the dye methyl orange. Chemically synthesized ZnS nanoparticles exhibited a zinc blende pattern in X-ray diffraction, had a dimension of 20-90 nm with a band gap (E) of 3.4 eV at 1.83 × 10 photons/second. Biologically synthesized ZnS nanoparticles of 40-90 nm showed a hexagonal pattern in the X-ray powder diffraction spectra with an E 3.7 eV at 1.68 × 10 photons/second. At a methyl orange (MO) concentration of 100 mg/L, dosage of 0.5 × 10 mol catalyst and pH 4, a 97.5% and 98% removal efficiency of MO was achieved in 90 min and 60 min for, respectively, chemically and biologically synthesized ZnS nanobiohybrids in the presence of UV-A light. The major degradation products of photocatalysis for chemically synthesized ZnS nanobiohybrids were naphtholate (CHO m/z 143) and hydroquinone (CHm/z 113). For the biologically synthesized ZnS nanobiohybrids, the degradation products were hydroquinone (CHm/z 113) and 2-phenylphenol (CHO m/z 170).
无机-微生物混合系统通过将半导体的光捕获特性与微生物细胞相结合,有潜力成为可持续、高效且通用的化学合成平台。在此,我们展示了光驱动的光催化半导体黑曲霉细胞-ZnS纳米颗粒,用于增强对染料甲基橙的去除。化学合成的ZnS纳米颗粒在X射线衍射中呈现闪锌矿结构,尺寸为20-90纳米,在1.83×10个光子/秒时带隙(E)为3.4电子伏特。生物合成的40-90纳米的ZnS纳米颗粒在X射线粉末衍射光谱中呈现六方结构,在1.68×10个光子/秒时E为3.7电子伏特。在甲基橙(MO)浓度为100毫克/升、催化剂用量为0.5×10摩尔且pH为4的条件下,在紫外-A光存在下,化学合成和生物合成的ZnS纳米生物杂化物分别在90分钟和60分钟内实现了97.5%和98%的MO去除效率。化学合成的ZnS纳米生物杂化物光催化的主要降解产物是萘酚盐(CHO m/z 143)和对苯二酚(CHm/z 113)。对于生物合成的ZnS纳米生物杂化物,降解产物是对苯二酚(CHm/z 113)和2-苯基苯酚(CHO m/z 170)。