Suppr超能文献

双固态纳米孔与主动单分子控制的细菌基因组电子作图

Electronic Mapping of a Bacterial Genome with Dual Solid-State Nanopores and Active Single-Molecule Control.

机构信息

Nooma Bio, 250 Natural Bridges Drive, Santa Cruz, California 95060-5790, United States.

Department of Physics, McGill University, 3600 Rue University, Montreal, QC, Canada H3A 2T8.

出版信息

ACS Nano. 2022 Apr 26;16(4):5258-5273. doi: 10.1021/acsnano.1c09575. Epub 2022 Mar 18.

Abstract

We present an electronic mapping of a bacterial genome using solid-state nanopore technology. A dual-nanopore architecture and active control logic are used to produce single-molecule data that enables estimation of distances between physical tags installed at sequence motifs within double-stranded DNA. Previously developed "DNA flossing" control logic generates multiple scans of each captured DNA. We extended this logic in two ways: first, to automate "zooming out" on each molecule to progressively increase the number of tags scanned during flossing, and second, to automate recapture of a molecule that exited flossing to enable interrogation of the same and/or different regions of the molecule. Custom analysis methods were developed to produce consensus alignments from each multiscan event. The combined multiscanning and multicapture method was applied to the challenge of mapping from a heterogeneous mixture of single-molecule fragments that make up the () chromosome. Coverage of 3.1× across 2355 resolvable sites of the genome was achieved after 5.6 h of recording time. The recapture method showed a 38% increase in the merged-event alignment length compared to single-scan alignments. The observed intertag resolution was 150 bp in engineered DNA molecules and 166 bp natively within fragments of DNA, with detection of 133 intersite intervals shorter than 200 bp in the reference map. We present results on estimating distances in repetitive regions of the genome. With an appropriately designed array, higher throughput implementations could enable human-sized genome and epigenome mapping applications.

摘要

我们使用固态纳米孔技术呈现了细菌基因组的电子图谱。采用双纳米孔结构和主动控制逻辑来生成单分子数据,从而能够估计安装在双链 DNA 序列基序中的物理标记之间的距离。以前开发的“DNA 搓捻”控制逻辑会对每个捕获的 DNA 进行多次扫描。我们以两种方式扩展了此逻辑:首先,自动化“缩放到”每个分子上,以逐步增加在搓捻过程中扫描的标记数量,其次,自动化重新捕获离开搓捻的分子,以实现对同一和/或不同分子区域的检测。开发了自定义分析方法来从每个多扫描事件中生成一致的比对。将组合的多扫描和多捕获方法应用于从构成 () 染色体的单分子片段的异质混合物中进行映射的挑战。在 5.6 小时的记录时间后,实现了 基因组 2355 个可分辨位点的 3.1×覆盖率。与单扫描比对相比,重新捕获方法使合并事件比对长度增加了 38%。在工程化 DNA 分子中观察到的标签间分辨率为 150 bp,在 DNA 片段中为 166 bp,在参考图谱中检测到 133 个小于 200 bp 的站点间隔。我们介绍了在 基因组重复区域中估计距离的结果。通过适当设计的阵列,更高的吞吐量实施可以实现人类大小的基因组和表观基因组图谱应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/870f/9048701/391e76288a3f/nn1c09575_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验