Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK.
Small. 2021 Jul;17(28):e2100711. doi: 10.1002/smll.202100711. Epub 2021 Jun 16.
Deoxyribonucleic acid (DNA) nanostructure-based data encoding is an emerging information storage mode, offering rewritable, editable, and secure data storage. Herein, a DNA nanostructure-based storage method established on a solid-state nanopore sensing platform to save and encrypt a 2D grayscale image is proposed. DNA multi-way junctions of different sizes are attached to a double strand of DNA carriers, resulting in distinct levels of current blockades when passing through a glass nanopore with diameters around 14 nm. The resulting quaternary encoding doubles the capacity relative to a classical binary system. Through toehold-mediated strand displacement reactions, the DNA nanostructures can be precisely added to and removed from the DNA carrier. By encoding the image into 16 DNA carriers using the quaternary barcodes and reading them in one simultaneous measurement, the image is successfully saved, encrypted, and recovered. Avoiding any proteins or enzymatic reactions, the authors thus realize a pure DNA storage system on a nanopore platform with increased capacity and programmability.
基于脱氧核糖核酸(DNA)纳米结构的数据编码是一种新兴的信息存储模式,提供可重写、可编辑和安全的数据存储。在此,提出了一种基于固态纳米孔传感平台的基于 DNA 纳米结构的存储方法,用于保存和加密二维灰度图像。不同大小的 DNA 多叉结连接到 DNA 载体的双链上,当通过直径约为 14nm 的玻璃纳米孔时,会导致明显不同的电流阻断水平。由此产生的四进制编码相对于经典的二进制系统增加了两倍的容量。通过引发链置换反应,DNA 纳米结构可以精确地添加到和从 DNA 载体中去除。通过使用四进制条码将图像编码到 16 个 DNA 载体中,并在一次同时测量中读取它们,成功地保存、加密和恢复了图像。作者避免了任何蛋白质或酶反应,因此在纳米孔平台上实现了具有更高容量和可编程性的纯 DNA 存储系统。