Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Department of Genetics, UNC Neuroscience Center, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States.
ACS Synth Biol. 2022 Apr 15;11(4):1397-1407. doi: 10.1021/acssynbio.1c00606. Epub 2022 Mar 18.
CRISPR-Cas9 systems have been developed to regulate gene expression by using either fusions to epigenetic regulators or, more recently, through the use of chemically mediated strategies. These approaches have armed researchers with new tools to examine the function of proteins by intricately controlling expression levels of specific genes. Here we present a CRISPR-based chemical approach that uses a new chemical epigenetic modifier (CEM) to hone to a gene targeted with a catalytically inactive Cas9 (dCas9) bridged to an FK506-binding protein (FKBP) in mammalian cells. One arm of the bifunctional CEM recruits BRD4 to the target site, and the other arm is composed of a bumped ligand that binds to a mutant FKBP with a compensatory hole at F36V. This bump-and-hole strategy allows for activation of target genes in a dose-dependent and reversible fashion with increased specificity and high efficacy, providing a new synthetic biology approach to answer important mechanistic questions in the future.
CRISPR-Cas9 系统已被开发用于通过与表观遗传调节剂融合,或者最近通过使用化学介导的策略来调节基因表达。这些方法为研究人员提供了新的工具,通过精细控制特定基因的表达水平来研究蛋白质的功能。在这里,我们提出了一种基于 CRISPR 的化学方法,该方法使用一种新型化学表观遗传修饰剂 (CEM) 来调整与催化失活 Cas9(dCas9)桥接的 FK506 结合蛋白 (FKBP) 靶向的基因在哺乳动物细胞中。双功能 CEM 的一个臂招募 BRD4 到靶位点,另一个臂由 bumped 配体组成,该配体与具有 F36V 补偿孔的突变 FKBP 结合。这种凹凸策略允许以剂量依赖和可逆的方式激活靶基因,具有更高的特异性和高效性,为未来回答重要的机制问题提供了一种新的合成生物学方法。