Suppr超能文献

COVID-19 病死率预测的预插管序贯器官衰竭评估评分:使用来自 86 个美国医疗保健系统的电子健康记录进行外部验证,以评估当前呼吸机分诊算法。

Preintubation Sequential Organ Failure Assessment Score for Predicting COVID-19 Mortality: External Validation Using Electronic Health Record From 86 U.S. Healthcare Systems to Appraise Current Ventilator Triage Algorithms.

机构信息

Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD.

Department of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD.

出版信息

Crit Care Med. 2022 Jul 1;50(7):1051-1062. doi: 10.1097/CCM.0000000000005534. Epub 2022 Mar 15.

Abstract

OBJECTIVES

Prior research has hypothesized the Sequential Organ Failure Assessment (SOFA) score to be a poor predictor of mortality in mechanically ventilated patients with COVID-19. Yet, several U.S. states have proposed SOFA-based algorithms for ventilator triage during crisis standards of care. Using a large cohort of mechanically ventilated patients with COVID-19, we externally validated the predictive capacity of the preintubation SOFA score for mortality prediction with and without other commonly used algorithm elements.

DESIGN

Multicenter, retrospective cohort study using electronic health record data.

SETTING

Eighty-six U.S. health systems.

PATIENTS

Patients with COVID-19 hospitalized between January 1, 2020, and February 14, 2021, and subsequently initiated on mechanical ventilation.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

Among 15,122 mechanically ventilated patients with COVID-19, SOFA score alone demonstrated poor discriminant accuracy for inhospital mortality in mechanically ventilated patients using the validation cohort (area under the receiver operating characteristic curve [AUC], 0.66; 95% CI, 0.65-0.67). Discriminant accuracy was even poorer using SOFA score categories (AUC, 0.54; 95% CI, 0.54-0.55). Age alone demonstrated greater discriminant accuracy for inhospital mortality than SOFA score (AUC, 0.71; 95% CI, 0.69-0.72). Discriminant accuracy for mortality improved upon addition of age to the continuous SOFA score (AUC, 0.74; 95% CI, 0.73-0.76) and categorized SOFA score (AUC, 0.72; 95% CI, 0.71-0.73) models, respectively. The addition of comorbidities did not substantially increase model discrimination. Of 36 U.S. states with crisis standards of care guidelines containing ventilator triage algorithms, 31 (86%) feature the SOFA score. Of these, 25 (81%) rely heavily on the SOFA score (12 exclusively propose SOFA; 13 place highest weight on SOFA or propose SOFA with one other variable).

CONCLUSIONS

In a U.S. cohort of over 15,000 ventilated patients with COVID-19, the SOFA score displayed poor predictive accuracy for short-term mortality. Our findings warrant reappraisal of the SOFA score's implementation and weightage in existing ventilator triage pathways in current U.S. crisis standards of care guidelines.

摘要

目的

先前的研究假设序贯器官衰竭评估(SOFA)评分是预测 COVID-19 机械通气患者死亡率的一个较差指标。然而,美国有几个州已经提出了基于 SOFA 的算法,用于危机标准护理期间的呼吸机分诊。本研究使用了大量 COVID-19 机械通气患者的队列,对插管前 SOFA 评分预测死亡率的能力进行了外部验证,同时验证了其他常用算法元素的能力。

设计

多中心、回顾性队列研究,使用电子病历数据。

地点

美国 86 个医疗系统。

患者

2020 年 1 月 1 日至 2021 年 2 月 14 日期间住院并随后接受机械通气的 COVID-19 患者。

干预措施

无。

测量和主要结果

在 15122 例 COVID-19 机械通气患者中,SOFA 评分单独用于验证队列中的院内死亡率预测,其判别准确性较差(接受者操作特征曲线下面积[AUROC],0.66;95%置信区间[CI],0.65-0.67)。使用 SOFA 评分类别时,判别准确性更差(AUROC,0.54;95%CI,0.54-0.55)。年龄单独用于预测院内死亡率的判别准确性优于 SOFA 评分(AUROC,0.71;95%CI,0.69-0.72)。年龄与连续 SOFA 评分(AUROC,0.74;95%CI,0.73-0.76)和分类 SOFA 评分(AUROC,0.72;95%CI,0.71-0.73)模型相结合,可提高死亡率的判别准确性。添加合并症并不能显著提高模型的判别能力。在有呼吸机分诊算法的 36 个美国危机标准护理指南的州中,有 31 个(86%)包含 SOFA 评分。其中,25 个(81%)严重依赖 SOFA 评分(12 个仅提议 SOFA;13 个将 SOFA 或提出的 SOFA 与另一个变量放在首位)。

结论

在一项超过 15000 例 COVID-19 机械通气患者的美国队列中,SOFA 评分对短期死亡率的预测准确性较差。我们的研究结果需要重新评估 SOFA 评分在当前美国危机标准护理指南中现有呼吸机分诊途径中的实施和权重。

相似文献

5

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验