Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
Curr Biol. 2022 Mar 28;32(6):1420-1428.e4. doi: 10.1016/j.cub.2022.01.056. Epub 2022 Mar 17.
Cation chloride cotransporters (CCCs) regulate intracellular chloride ion concentration ([Cl]) within neurons, which can reverse the direction of the neuronal response to the neurotransmitter GABA. Na K Cl (NKCC) and K Cl (KCC) cotransporters transport Cl into or out of the cell, respectively. When NKCC activity dominates, the resulting high [Cl] can lead to an excitatory and depolarizing response of the neuron upon GABA receptor opening, while KCC dominance has the opposite effect. This inhibitory-to-excitatory GABA switch has been linked to seasonal adaption of circadian clock function to changing day length, and its dysregulation is associated with neurodevelopmental disorders such as epilepsy. In Drosophila melanogaster, constant light normally disrupts circadian clock function and leads to arrhythmic behavior. Here, we demonstrate a function for CCCs in regulating Drosophila locomotor activity and GABA responses in circadian clock neurons because alteration of CCC expression in circadian clock neurons elicits rhythmic behavior in constant light. We observed the same effects after downregulation of the Wnk and Fray kinases, which modulate CCC activity in a [Cl]-dependent manner. Patch-clamp recordings from the large LNv clock neurons show that downregulation of KCC results in a more positive GABA reversal potential, while KCC overexpression has the opposite effect. Finally, KCC and NKCC downregulation reduces or increases morning behavioral activity during long photoperiods, respectively. In summary, our results support a model in which the regulation of [Cl] by a KCC/NKCC/Wnk/Fray feedback loop determines the response of clock neurons to GABA, which is important for adjusting behavioral activity to constant light and long-day conditions.
阳离子氯离子共转运体(CCCs)调节神经元内氯离子浓度([Cl]),可逆转神经元对神经递质 GABA 的反应方向。Na^+K^+-Cl^-(NKCC)和 K^+-Cl^-(KCC)共转运体分别将 Cl^-转运入或转运出细胞。当 NKCC 活性占主导地位时,细胞内高浓度的[Cl]会导致 GABA 受体开放时神经元产生兴奋性去极化反应,而 KCC 占主导地位时则产生相反的效果。这种 GABA 从抑制性到兴奋性的转换与生物钟功能对昼夜时长变化的季节性适应有关,其失调与神经发育障碍如癫痫有关。在黑腹果蝇中,持续光照通常会破坏生物钟功能,导致节律行为异常。在这里,我们证明了 CCCs 在调节果蝇运动活性和生物钟神经元中 GABA 反应中的作用,因为生物钟神经元中 CCC 表达的改变会在持续光照下引发节律行为。我们观察到下调 Wnk 和 Fray 激酶后也会产生相同的效果,这两种激酶以[Cl]-依赖性的方式调节 CCC 活性。从大型 LNv 生物钟神经元进行的膜片钳记录显示,下调 KCC 会导致 GABA 反转电位更加正向,而过表达 KCC 则会产生相反的效果。最后,下调 KCC 和 NKCC 分别会减少或增加长光照周期下的早晨行为活动。总之,我们的结果支持这样一种模型,即 KCC/NKCC/Wnk/Fray 反馈环调节[Cl],决定了生物钟神经元对 GABA 的反应,这对于调整行为活动以适应持续光照和长日照条件非常重要。